Is this what you are asking for? I have already put this in comments but seems to me you did not follow link
Collision Resolution in the Hashtable Class
Recall that when inserting an item into or retrieving an item from a hash table, a collision can occur. When inserting an item, an open slot must be found. When retrieving an item, the actual item must be found if it is not in the expected location. Earlier we briefly examined two collusion resolution strategies:
- Linear probing
- Quardratic probing
The Hashtable class uses a different technique referred to as rehasing. (Some sources refer to rehashing as double hashing.)
Rehasing works as follows: there is a set of hash different functions, H1 ... Hn, and when inserting or retrieving an item from the hash table, initially the H1 hash function is used. If this leads to a collision, H2 is tried instead, and onwards up to Hn if needed. The previous section showed only one hash function, which is the initial hash function (H1). The other hash functions are very similar to this function, only differentiating by a multiplicative factor. In general, the hash function Hk is defined as:
Hk(key) = [GetHash(key) + k * (1 + (((GetHash(key) >> 5) + 1) % (hashsize – 1)))] % hashsize
Mathematical Note With rehasing it is important that each slot in the hash table is visited exactly once when hashsize number of probes are made. That is, for a given key you don't want Hi and Hj to hash to the same slot in the hash table. With the rehashing formula used by the Hashtable class, this property is maintained if the result of (1 + (((GetHash(key) >> 5) + 1) % (hashsize – 1))and hashsize are relatively prime. (Two numbers are relatively prime if they share no common factors.) These two numbers are guaranteed to be relatively prime if hashsize is a prime number. Rehasing provides better collision avoidance than either linear or quadratic probing.
sources here