For a single watchlist
You can use a selected isin with np.where by selecting which series you want to check for and by using a different watchlist for each series. For your dataframe df:
Episode Number Rating Series 0 4 Days Out 2.90 9.1 Breaking Bad (2008) 1 Buyout 5.60 9.0 Breaking Bad (2008) 2 Pilot 1.10 9.0 Breaking Bad (2008) 3 Dog Fight 1.12 9.0 Suits (2011) 4 We're Done 4.70 9.0 Suits (2011) 5 Privilege 5.60 8.9 Suits (2011) 6 Pilot 1.10 8.9 Suits (2011)
and watchlist:
[1.1, 4.7, 2.9]
Assume that watchlist is just for Breaking Bad. Use np.where to apply function only to rows that match Breaking Bad (2008) and then use isin to see if the value in the column Rating is in your watchlist:
df['Breaking Bad Watched'] = df['Number'][np.where(df['Series'] == "Breaking Bad (2008)")[0]].isin(watchlist)
Gives:
Episode Number Rating Series Breaking Bad Watched 0 4 Days Out 2.90 9.1 Breaking Bad (2008) True 1 Buyout 5.60 9.0 Breaking Bad (2008) False 2 Pilot 1.10 9.0 Breaking Bad (2008) True 3 Dog Fight 1.12 9.0 Suits (2011) NaN 4 We're Done 4.70 9.0 Suits (2011) NaN 5 Privilege 5.60 8.9 Suits (2011) NaN 6 Pilot 1.10 8.9 Suits (2011) NaN
Then use map to convert from true / false to yes / no:
d = {True: 'Yes', False: 'No'} df['Breaking Bad Watched'] = df['Breaking Bad Watched'].map(d) Episode Number Rating Series Breaking Bad Watched 0 4 Days Out 2.90 9.1 Breaking Bad (2008) Yes 1 Buyout 5.60 9.0 Breaking Bad (2008) No 2 Pilot 1.10 9.0 Breaking Bad (2008) Yes 3 Dog Fight 1.12 9.0 Suits (2011) NaN 4 We're Done 4.70 9.0 Suits (2011) NaN 5 Privilege 5.60 8.9 Suits (2011) NaN 6 Pilot 1.10 8.9 Suits (2011) NaN
------------------------ For A dictionary of Watchlists --------------------
If you have a dictionary of watchlists where the series and episode number is specified separately:
watchlist = {'Breaking Bad (2008)': [1.1, 4.7, 2.9], 'Suits (2011)': [4.7, 5.6]}
You can interate over it as follows:
# Save name of new columns into new_col_list new_col_list = [] for series, wlist in watchlist.iteritems(): # Save names of new columns into new_col_list new_col_list.append('{} Watched'.format(series)) # Do calculation print series, wlist df['{} Watched'.format(series)] = df['Number'][np.where(df['Series'] == series)[0]].isin(wlist)
This gives you:
Episode Number Rating Series \ 0 4 Days Out 2.90 9.1 Breaking Bad (2008) 1 Buyout 5.60 9.0 Breaking Bad (2008) 2 Pilot 1.10 9.0 Breaking Bad (2008) 3 Dog Fight 1.12 9.0 Suits (2011) 4 We're Done 4.70 9.0 Suits (2011) 5 Privilege 5.60 8.9 Suits (2011) 6 Pilot 1.10 8.9 Suits (2011) Breaking Bad (2008) Watched Suits (2011) Watched 0 True NaN 1 False NaN 2 True NaN 3 NaN False 4 NaN True 5 NaN True 6 NaN False new_col_list = ['Breaking Bad (2008) Watched', 'Suits (2011) Watched']
[1]If have only a few names then manually write them: Then use pd.concatenate to concatenate the two watch columns, and drop those columns:
df['Watched'] = pd.concat([df['Breaking Bad (2008) Watched'].dropna(), df['Suits (2011) Watched'].dropna()]) # Remove old Columns df.drop(['Breaking Bad (2008) Watched','Suits (2011) Watched'], axis=1, inplace=True)
[2] If have a list of columns names then add list of names to pd.concat using a simple list comprehension, iterating over column names in new_col_list:
df['Watched'] = pd.concat([df['{}'.format(i)].dropna() for i in new_col_list]) # Remove old Name Columns df.drop(new_col_list, axis=1, inplace=True) # Convert True False to Yes No d = {True: 'Yes', False: 'No'} df['Watched'] = df['Watched'].map(d) # Final Output: df: Episode Number Rating Series Watched 0 4 Days Out 2.90 9.1 Breaking Bad (2008) Yes 1 Buyout 5.60 9.0 Breaking Bad (2008) No 2 Pilot 1.10 9.0 Breaking Bad (2008) Yes 3 Dog Fight 1.12 9.0 Suits (2011) No 4 We're Done 4.70 9.0 Suits (2011) Yes 5 Privilege 5.60 8.9 Suits (2011) Yes 6 Pilot 1.10 8.9 Suits (2011) No
Sources
Source for isin:
[1] How to check if a value is in the list in selection from pandas data frame? http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.isin.html
Source for concat:
[2] https://stackoverflow.com/a/10972557/2254228
Source for map:
[3] Convert Pandas series containing string to boolean
watchlistjust forBreaking Bad?watchlistappears more than twice indf.Number?