I'm using the following generator:
datagen = ImageDataGenerator( fill_mode='nearest', cval=0, rescale=1. / 255, rotation_range=90, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.5, horizontal_flip=True, vertical_flip=True, validation_split = 0.5, ) train_generator = datagen.flow_from_dataframe( dataframe=traindf, directory=train_path, x_col="id", y_col=classes, subset="training", batch_size=8, seed=123, shuffle=True, class_mode="other", target_size=(64,64)) STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size valid_generator = datagen.flow_from_dataframe( dataframe=traindf, directory=train_path, x_col="id", y_col=classes, subset="validation", batch_size=8, seed=123, shuffle=True, class_mode="raw", target_size=(64, 64)) STEP_SIZE_VALID = valid_generator.n // valid_generator.batch_size Now the problem is that the validation data is also being augmented which I guess is not something you'd want to do while training. How do I avoid this? I don't have two directories for train and validation. I want to use a single dataframe to train the network. Any suggestions?