2

Am trying to compare a column in spark DataFrame against a given date, if column date is less than given date add n hour else add x hours.

something like

addhours = lambda x,y: X + 14hrs if (x < y) else X + 10hrs 

where y will hold a static date specified then apply on DataFrame column

something like

df = df.withColumn("newDate", checkDate(df.Time, F.lit('2015-01-01') )) 

here is sample for df

from pyspark.sql import functions as F import datetime df = spark.createDataFrame([('America/NewYork', '2020-02-01 10:00:00'),('Africa/Nairobi', '2020-02-01 10:00:00')],["OriginTz", "Time"]) 

Am bit new to spark dataframes :)

0

2 Answers 2

2

Use when+othewise statement instead of udf.

Example:

from pyspark.sql import functions as F #we are casting to timestamp and date so that we can compare in when df = spark.createDataFrame([('America/NewYork', '2020-02-01 10:00:00'),('Africa/Nairobi', '2003-02-01 10:00:00')],["OriginTz", "Time"]).\ withColumn("literal",F.lit('2015-01-01').cast("date")).\ withColumn("Time",F.col("Time").cast("timestamp")) df.show() #+---------------+-------------------+----------+ #| OriginTz| Time| literal| #+---------------+-------------------+----------+ #|America/NewYork|2020-02-01 10:00:00|2015-01-01| #| Africa/Nairobi|2003-02-01 10:00:00|2015-01-01| #+---------------+-------------------+----------+ #using unix_timestamp function converting to epoch time then adding 10*3600 -> 10 hrs finally converting to timestamp format df.withColumn("new_date",F.when(F.col("Time") > F.col("literal"),F.to_timestamp(F.unix_timestamp(F.col("Time"),'yyyy-MM-dd HH:mm:ss') + 10 * 3600)).\ otherwise(F.to_timestamp(F.unix_timestamp(F.col("Time"),'yyyy-MM-dd HH:mm:ss') + 14 * 3600))).\ show() #+---------------+-------------------+----------+-------------------+ #| OriginTz| Time| literal| new_date| #+---------------+-------------------+----------+-------------------+ #|America/NewYork|2020-02-01 10:00:00|2015-01-01|2020-02-01 20:00:00| #| Africa/Nairobi|2003-02-01 10:00:00|2015-01-01|2003-02-02 00:00:00| #+---------------+-------------------+----------+-------------------+ 

In case if you don't want to add literal value as dataframe column.

lit_val='2015-01-01' df = spark.createDataFrame([('America/NewYork', '2020-02-01 10:00:00'),('Africa/Nairobi', '2003-02-01 10:00:00')],["OriginTz", "Time"]).\ withColumn("Time",F.col("Time").cast("timestamp")) df.withColumn("new_date",F.when(F.col("Time") > F.lit(lit_val).cast("date"),F.to_timestamp(F.unix_timestamp(F.col("Time"),'yyyy-MM-dd HH:mm:ss') + 10 * 3600)).\ otherwise(F.to_timestamp(F.unix_timestamp(F.col("Time"),'yyyy-MM-dd HH:mm:ss') + 14 * 3600))).\ show() #+---------------+-------------------+----------+-------------------+ #| OriginTz| Time| literal| new_date| #+---------------+-------------------+----------+-------------------+ #|America/NewYork|2020-02-01 10:00:00|2015-01-01|2020-02-01 20:00:00| #| Africa/Nairobi|2003-02-01 10:00:00|2015-01-01|2003-02-02 00:00:00| #+---------------+-------------------+----------+-------------------+ 
Sign up to request clarification or add additional context in comments.

Comments

1

You can also do this using .expr and interval. This way you do not have to convert to another format.

from pyspark.sql import functions as F df.withColumn("new_date", F.expr("""IF(Time<y, Time + interval 14 hours, Time + interval 10 hours)""")).show() #+---------------+-------------------+----------+-------------------+ #| OriginTz| Time| y| new_date| #+---------------+-------------------+----------+-------------------+ #|America/NewYork|2020-02-01 10:00:00|2020-01-01|2020-02-01 20:00:00| #| Africa/Nairobi|2020-02-01 10:00:00|2020-01-01|2020-02-01 20:00:00| #+---------------+-------------------+----------+-------------------+ 

Comments

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.