I am trying to understand how this works..
I have this df.
ticket_id address grafitti_status 0 284932 10041 roseberry, Detroit MI NaN 1 285362 18520 evergreen, Detroit MI NaN 2 285361 18520 evergreen, Detroit MI NaN 3 285338 1835 central, Detroit MI NaN 4 285346 1700 central, Detroit MI NaN 5 285345 1700 central, Detroit MI NaN where
In: df.grafitti_status.unique() Out: array([nan, 'GRAFFITI TICKET'], dtype=object) So I am trying to change NaN to 0 and 'GRAFFITI TICKET' to 1.
I used
df.loc[df['grafitti_status'] == 'GRAFFITI TICKET', 'grafitti_status'] = 1 which works fine, but the same for '0'
df.loc[df['grafitti_status'] == np.nan, 'grafitti_status'] = 0 Out: array([nan, 1], dtype=object) does not work because NaN values still remain..
and
df['grafitti_status'] = df['grafitti_status'].replace({np.nan:0,'GRAFFITI TICKET':1},inplace=True) does not work either, replacing everything with None.
ticket_id address grafitti_status 0 284932 10041 roseberry, Detroit MI None 1 285362 18520 evergreen, Detroit MI None 2 285361 18520 evergreen, Detroit MI None 3 285338 1835 central, Detroit MI None 4 285346 1700 central, Detroit MI None 5 285345 1700 central, Detroit MI None 6 285347 1700 central, Detroit MI None Can anybody provide me any insight why it works this way?
I have finally found that I can achieve the desired result with
df.loc[df['grafitti_status'] == 'GRAFFITI TICKET', 'grafitti_status'] = 1 df['grafitti_status'] = df['grafitti_status'].fillna(0) Out: array([0, 1], dtype=int64) which leads to the following warning message.
C:\Users\Maria\Anaconda3\lib\site-packages\pandas\core\indexing.py:543: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self.obj[item] = s C:\Users\Maria\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead So I am still not sure what would be the correct way to do it?