1

I'm not able to run python pipeline through airflow BeamRunPythonPipelineOperator. Below is my complete code:

DAG FILE

 import os from datetime import datetime, timedelta from airflow.utils.dates import days_ago from airflow import DAG from airflow.providers.google.cloud.operators.dataflow import DataflowConfiguration from airflow.providers.apache.beam.operators.beam import BeamRunPythonPipelineOperator from airflow.providers.google.cloud.operators.dataflow import DataflowTemplatedJobStartOperator default_args = { "owner": "<...>", "start_date": days_ago(1), 'dataflow_default_options': { "project": "<...>", } } dag = DAG( dag_id="word_count", default_args=default_args, schedule_interval="@once" ) start_python_pipeline_dataflow_runner = BeamRunPythonPipelineOperator( task_id="start_python_pipeline_dataflow_runner", runner="DataflowRunner", py_file="gs://<...>/word_count.py", pipeline_options={ 'input':"gs://<...>/kinglear.txt", 'output':"gs://<...>/output.txt", 'temp_location':"gs://<...>/temp/", 'staging_location':"gs://<...>/temp/", }, py_options=[], py_requirements=['apache-beam[gcp]==2.26.0'], py_interpreter='python3', py_system_site_packages=False, dataflow_config=DataflowConfiguration( job_name='{{task.task_id}}', project_id="<...>", location="us-central1" ), dag=dag, ) 

Python File (word_count.py)

 """A word-counting workflow.""" # pytype: skip-file import argparse import logging import re import apache_beam as beam from apache_beam.io import ReadFromText from apache_beam.io import WriteToText from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import SetupOptions class WordExtractingDoFn(beam.DoFn): """Parse each line of input text into words.""" def process(self, element): """Returns an iterator over the words of this element. The element is a line of text. If the line is blank, note that, too. Args: element: the element being processed Returns: The processed element. """ return re.findall(r'[\w\']+', element, re.UNICODE) def run(argv=None, save_main_session=True): """Main entry point; defines and runs the wordcount pipeline.""" parser = argparse.ArgumentParser() parser.add_argument( '--input', dest='input', default='gs://<...>/kinglear.txt', help='Input file to process.') parser.add_argument( '--output', dest='output', default='gs://<...>/output.txt', help='Output file to write results to.') argv = [ '--project=<...>', '--region=us-central1', '--runner=DataflowRunner', '--staging_location=gs://<...>/temp/', '--temp_location=gs://<...>/temp/', '--template_location=gs://<...>/templates/word_count_template' ] known_args, pipeline_args = parser.parse_known_args(argv) # We use the save_main_session option because one or more DoFn's in this # workflow rely on global context (e.g., a module imported at module level). pipeline_options = PipelineOptions(pipeline_args) pipeline_options.view_as(SetupOptions).save_main_session = save_main_session # The pipeline will be run on exiting the with block. with beam.Pipeline(argv=argv,options=pipeline_options) as p: # Read the text file[pattern] into a PCollection. lines = p | 'Read' >> ReadFromText(known_args.input) counts = ( lines | 'Split' >> (beam.ParDo(WordExtractingDoFn()).with_output_types(str)) | 'PairWIthOne' >> beam.Map(lambda x: (x, 1)) | 'GroupAndSum' >> beam.CombinePerKey(sum)) # Format the counts into a PCollection of strings. def format_result(word, count): return '%s: %d' % (word, count) output = counts | 'Format' >> beam.MapTuple(format_result) # Write the output using a "Write" transform that has side effects. # pylint: disable=expression-not-assigned output | 'Write' >> WriteToText(known_args.output) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run() 

Below is the screenshot of the composer:

Below is the screenshot of the composer

I am not able to see the dataflow job in the console, as well as count, result in the bucket. Could anyone suggest to me the right approach or any suggestions on this?

2
  • 1
    First, please remove all PII in the question please. Could you please give me more details about your architecture ? Are you triggering the dag from the airflow console or GCP composer console ? Are you processing those data in a dataflow instance on the same project ? Commented Nov 2, 2021 at 12:43
  • I have a python script which contains dataflow code to read file from gcs and count the words Appiarance in the file, I am trying to run that script through the airflow BeamRunPythonPipelineOperator which suppose to create a dataflow job for my file/data processing Commented Nov 2, 2021 at 15:16

1 Answer 1

1

You DAG is ok, the problem is on the Beam Python file, there is an error when you send the Dataflow args in the argv. The best approach is extend pipeline_args. And the job is not being submitted because you are sending the argv in the beam.Pipeline.

Following is the fixed code:

word_count.py :

"""A word-counting workflow.""" # pytype: skip-file import argparse import logging import re import os import apache_beam as beam from apache_beam.io import ReadFromText from apache_beam.io import WriteToText from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import SetupOptions class WordExtractingDoFn(beam.DoFn): """Parse each line of input text into words.""" def process(self, element): """Returns an iterator over the words of this element. The element is a line of text. If the line is blank, note that, too. Args: element: the element being processed Returns: The processed element. """ return re.findall(r'[\w\']+', element, re.UNICODE) def run(argv=None, save_main_session=True): """Main entry point; defines and runs the wordcount pipeline.""" parser = argparse.ArgumentParser() parser.add_argument( '--input', dest='input', default='gs://dataflow-samples/shakespeare/kinglear.txt', help='Input file to process.') parser.add_argument( '--output', dest='output', default='gs://<bucket>/newoutput', help='Output file to write results to.') #argv = [ # '--project=<...>', # '--region=us-central1', # '--runner=DataflowRunner', # '--staging_location=gs://<...>/temp/', # '--temp_location=gs://<...>/temp/', # '--template_location=gs://<...>/templates/word_count_template' # ] known_args, pipeline_args = parser.parse_known_args(argv) pipeline_args.extend([ '--runner=DataflowRunner', '--project=<project-name>', '--region=<region>', '--staging_location=gs://<bucket>/', '--temp_location=gs://<bucket>/temp', '--job_name=your-wordcount-job', ]) # We use the save_main_session option because one or more DoFn's in this # workflow rely on global context (e.g., a module imported at module level). pipeline_options = PipelineOptions(pipeline_args) pipeline_options.view_as(SetupOptions).save_main_session = save_main_session # The pipeline will be run on exiting the with block. with beam.Pipeline(options=pipeline_options) as p: lines = p | 'Read' >> ReadFromText(known_args.input) counts = ( lines | 'Split' >> (beam.ParDo(WordExtractingDoFn()).with_output_types(str)) | 'PairWIthOne' >> beam.Map(lambda x: (x, 1)) | 'GroupAndSum' >> beam.CombinePerKey(sum)) # Format the counts into a PCollection of strings. def format_result(word, count): return '%s: %d' % (word, count) output = counts | 'Format' >> beam.MapTuple(format_result) # Write the output using a "Write" transform that has side effects. # pylint: disable=expression-not-assigned output | 'Write' >> WriteToText(known_args.output) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run() 
Sign up to request clarification or add additional context in comments.

Comments

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.