In the PBRT book section on null scattering, they define the null-scattering coefficient $\sigma_n$ and the constant majorant $\sigma_{maj}$, and define the equation:
$\frac{dL_o(p, \omega)}{dt} = -(\sigma_{maj} - \sigma_n(p, \omega))L_i(p, -\omega) $.
Then, they write that they integrate this equation over the segment of a ray and divide it by $L(p)$ to get:
$T_r(p \to p') = e^{-\sigma_{maj}t} + \int_0^d e^{-\sigma_{maj}t} \sigma_n(p + t \omega) \, T_r(p + t\omega \to p') \, dt$,
I have been trying to derive it myself using the same method but I haven't had much success. This is as close as I was able to get, but I'm not sure if I'm on the right path:
$\int_0^d \, dL(t) = - \int_0^d (\sigma_{maj} - \sigma_n(t)) \, L(t) \, dt$,
$\frac{L(d)}{L(0)} = 1 - \int_0^d (\sigma_{maj} - \sigma_n(t)) \, \frac{L(t)}{L(0)} \, dt$,
$T_r(p \to p') = 1 - \int_0^d (\sigma_{maj} - \sigma_n(t)) \, T_r(p \to p + t\omega) \, dt$,
$T_r(p \to p') = 1 - (\int_0^d \sigma_{maj} \, T_r(p \to p + t\omega) \, dt - \int_0^d \sigma_n(t) \, T_r(p \to p + t\omega) \, dt)$.
Focusing on the first occurrence of the transmittance function under the integral:
$T_r(p \to p + t\omega) = e^{-\int_0^t \, (\sigma_{maj} - \sigma_n(s)) \, ds} $,
$T_r(p \to p + t\omega) = e^{\int_0^t \, \sigma_n(s) \, ds} e^{-\sigma_{maj}t} $.
Substituting into the previous equation:
$T_r(p \to p') = 1 - (\int_0^d \sigma_{maj} \, e^{\int_0^t \, \sigma_n(s) \, ds} e^{-\sigma_{maj}t} \, dt - \int_0^d \sigma_n(t) \, T_r(p \to p + t\omega) \, dt)$
This is where I get stuck, I can't see a way to simplify things to get the equation given in the book. Am I heading in the right direction or is there some trick to getting the correct solution that I'm missing?