I'm trying to use the duality property:
$$g(t) \leftrightarrow G(j\omega) \implies G(t) \leftrightarrow 2\pi g(-j\omega)$$
and the time-shifting property:
$$x(t-t_0) \leftrightarrow e^{-j\omega t_0}X(j\omega)$$
to prove the frequency shifting property: $$e^{j\omega_0t}X(t) \leftrightarrow \hat{X}(j(\omega-\omega_0))$$ (where $\hat X(t)$ is the fourier transform of $X(t)$ to avoid confusion).
Applying the duality property to the time-shifting property
$$e^{-j\omega_0 \tau}X(j\tau) \leftrightarrow 2\pi x(-(\omega - \omega_0))$$
Then replacing the RHS by $\hat X(j\omega) = 2\pi x(-j\omega)$:
$$e^{-j\omega_0 \tau}X(j\tau) \leftrightarrow \hat X(j(\omega-\omega_0))$$
Now replacing $j\tau$ with $t$ (s.t. $\tau = -jt$) we have:
$$e^{\omega_0 t}X(t) \leftrightarrow \hat X(j(\omega-\omega_0))$$
But now I've lost my $j$. What have I done wrong?