WeberLogic
Logic interpreter and parsing library
Install
cabal update cabal install WeberLogic
Interpreter
$ ./WeberLogic Enter Command > truthTable: a&b+c->~a&b 'a' 'b' 'c' | (((a&b)+c)->(~a&b)) True True True | False True True False | False True False True | False True False False | True False True True | True False True False | True False False True | False False False False | True Enter Command > toNand: a&b->c (((((a|b)|(a|b))|((a|b)|(a|b)))|(((a|b)|(a|b))|((a|b)|(a|b))))|(c|c)) Enter Command > toNor: a&b->c (((((a/a)/(b/b))/((a/a)/(b/b)))/c)/((((a/a)/(b/b))/((a/a)/(b/b)))/c))
Library
The library contains two modules.
WeberLogic.Parser WeberLogic.Actions
WeberLogic.Parser
The WeberLogic.Parser provides functions which read stings and return an abstract syntax tree (AST). The AST in implement with a data type called LogicExp and Letter.
-
Data Types
LogicExp - A recursively defined data type which implements as abstract syntax tree. It provides the following type constructors which function as nodes in the AST: Not, And, Or, Implies, Iff, Nand, and Nor. The Predicate type constructor functions as the AST leaves.
> import WeberLogic.Parser > Predicate 'A' [(Variable 'x', Name 'a')] > Not (Predicate 'A' [(Variable 'x', Name 'a')]) > And (Predicate 'A' [(Variable 'x', Name 'a')]) (Predicate 'B' [])
Letter - This Data Constructor provies two Type constructors Variable and Name. They are used in the construction of Predicate which requires a list of type Letter
> import WeberLogic.Parser > Predicate 'A' [(Variable 'x', Name 'a')]
-
Functions
> import WeberLogic.Parser > a = parseExp "Axa" > b = parseExp "~Axa" > c = parseExp "Axa&B"
> import WeberLogic.Parser > a = parseExp "|- Axa" > b = parseExp "~Axa, B |- Cax" > c = parseExp "Axa&B, B, C |- Ax->By"
WeberLogic.Actions
The WeberLogic.Actions modules provides functions which manipulate the LogicExp AST.
> import WeberLogic.Parser > import WeberLogic.Actions > mapM_ putStrLn $ truthTableStr $ readExp "A&B" 'a' 'b' | (a&~b) True True | False True False | True False True | False False False | False > toNand $ readExp "A&~B" ((a|(b|b))|(a|(b|b))) > toNor $ readExp "A&~B" ((a/a)/((b/b)/(b/b)))