1
$\begingroup$

Let be V a finite dimensional vector space operator and T is a linear operator on V whose characteristic polinomial splits, and let $\lambda_1$, ..., $\lambda_k$ be the distinct eigenvalues of T. Prove that if T is diagonalizable then $rank(T-\lambda_i I_d)=rank((T-\lambda_i I_d)^2)$ for $1\leq i \leq k$.

I thought in construct a basis $ \beta$ of eigenvector of T, such that $[T]_ \beta$ is diagonal to proof that $rank(T-\lambda_i I_d)=rank((T-\lambda_i I_d)^2)$ for $1\leq i \leq k$, but I don't have proved it.

$\endgroup$

1 Answer 1

0
$\begingroup$

It is clear that $\ker(T - \lambda_i \cdot \mathrm{id}) \subseteq \ker(T - \lambda_i \cdot \mathrm{id})^2$. For the other direction, let $v \in V$ and decompose it as $v = v_1 + \ldots + v_k$ where $Tv_j = \lambda_j v_j$. If $v \in \mathrm{ker}(T - \lambda_i \cdot \mathrm{id})^2$ then

$$ (T - \lambda_i \cdot \mathrm{id})^2(v) = (T - \lambda_i \cdot \mathrm{id}) \left( \sum_{j \neq i} (\lambda_j - \lambda_i) v_j \right) = \sum_{j \neq i} (\lambda_j - \lambda_i)^2 v_j = \sum_{\{j \neq i \, | v_j \neq 0\}} (\lambda_j - \lambda_i)^2 v_j = 0.$$

Since the set $\{ v_j \, | \, v_j \neq 0 \}$ is linearly independent (for it consists of eigenvectors of $T$ that correspond to different eigenvalues) and since $\lambda _i \neq \lambda_j \neq 0$ for all $j \neq i$, the set $\{ v_j \, | \, v_j \neq 0 \}$ must be empty, showing that $v = v_i$ and hence $v \in \mathrm{ker}(T - \lambda_i \cdot \mathrm{id})$.

Thus, $\ker(T - \lambda_i \cdot \mathrm{id}) = \ker(T - \lambda_i \cdot \mathrm{id})^2$ and hence

$$\dim \ker(T - \lambda_i \cdot \mathrm{id}) = \dim \ker(T - \lambda_i \cdot \mathrm{id})^2 \implies \mathrm{rank}(T - \lambda_i \cdot \mathrm{id}) = \mathrm{rank} (T - \lambda_i \cdot \mathrm{id})^2. $$

$\endgroup$
0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.