Let $T(a,b)=(a+b,2a-b,3a)$
Find the image of $T$ (as a span of vectors).
So I created the augmented matrix and got this: $A$= $\begin{bmatrix}1 & 1 & b_1\\2 & -1 & b_2\\ 3 &0 & b_3\end{bmatrix}$
then I did -3r1+r3 $A$= $\begin{bmatrix} 1& 1 &b_1\\2 & -1 & b_2\\ 0 &-3 & -3b_1+b_3\end{bmatrix}$
then I did -2r1+r2 $A$= $\begin{bmatrix}1 & 1 & b_1\\0 & -3 & -2b_1+b_2\\ 0 &-3 & -3b_1+b_3 \end{bmatrix}$
Finally -b2+b3 $A$= $\begin{bmatrix}1 & 1 & b_1\\0 & -3 & -2b_1+b_2\\ 0 &0 & -b_1-b_2+b_3\end{bmatrix}$
Now I know in order for the system to be consistent $-b_1-b_2+b_3$ must equal $0$ but how do I find the image of $T$ as a span of vectors?