I have 4 vectors:
$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix} $, $\; u_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ \end{pmatrix} $, $\; u_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ \end{pmatrix} $, $\; u_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \end{pmatrix} $
and I wanna express the following vector in terms of them:
$\; v = \begin{pmatrix} 2 \\ 3 \\ 4 \\ \end{pmatrix} $
I'm working this way:
First put vectors in a matrix and then put in rref:
$ \left[ \begin{array}{cccc|c} 1&1&1&0&2\\ 1&1&1&1&3\\ 1&0&0&0&4 \end{array} \right] $ => $ \left[ \begin{array}{cccc|c} 1&1&1&0&2\\ 0&0&0&1&1\\ 0&-1&-1&0&2 \end{array} \right] $ => $ \left[ \begin{array}{cccc|c} 1&1&1&0&2\\ 0&-1&-1&0&2\\ 0&0&0&1&1 \end{array} \right] $ =>
$ \left[ \begin{array}{cccc|c} 1&1&1&0&2\\ 0&1&1&0&-2\\ 0&0&0&1&1 \end{array} \right] $ => $ \left[ \begin{array}{cccc|c} 1&1&1&0&2\\ 0&1&1&0&-2\\ 0&0&0&1&1 \end{array} \right] $ => $ \left[ \begin{array}{cccc|c} 1&0&0&0&4\\ 0&1&1&0&-2\\ 0&0&0&1&1 \end{array} \right] $
but this result (4 -2 1) is meaningless to me (because $4u_1 -2u_2 + u_3 \ne v$)... does it make any sense? Can it represent some sort of coeficients of the linear combination?
If I swap $u_3$ for $u_4$ in the matrix, the (4 -2 1) is the same but it DOES make sense, because $4u_1 -2u_2 + u_4 = v$
How can I write v as combination of u's ? If I did the right way, how does this make sense?