0
$\begingroup$

Given the system of linear equations:

$\hspace{20pt}6x_2 + 2x_3 + 10x_4 = b_1$

$x_1 +x_2+4x_3- 2x_4 \hspace{5pt}=b_2$

$x_1 - 2x_2 + 3x_3 - 7x_4 = b_3$

(a) Find all possible Values of $b_1$,$b_2$,and $b_3$ for which this system has solutions;

(b)Find all possible solutions of this system if $b_1=6$,$b_2=7$, and $b_3 = 4$.

I was able to solve (a), but not sure what the solution should look like for (b)?

I set up an augmented matrix obtain rref of the matrix:(edit after comment)

$\begin{bmatrix} 0&6&2&10&b_1\\ 1&1&4&-2&b_2\\ 1&-2&3&-7&b_3\\ \end{bmatrix} \Rightarrow \begin{bmatrix} 1&0&\frac{11}{3}&-\frac{11}{3}&b_2-\frac{1}{6}b_1\\ 0&1&\frac{1}{3}&\frac{5}{3}&\frac{1}{6}b_1\\ 0&0&0&0&b_3-b_2+\frac{1}{2}b_1\\ \end{bmatrix}$

So for (a): $b_2 = \frac{1}{6}b_1$; $b_3=b_2-\frac{1}{2}b_1=-\frac{1}{3}b_1$.

We get, $\begin{bmatrix} \frac{1}{6}b_1\\ \frac{1}{6}b_1\\ -\frac{1}{3}b_1 \end{bmatrix}$ the column space of matrix is the line containing vector $\begin{bmatrix} \frac{1}{6}\\ \frac{1}{6}\\ -\frac{1}{3} \end{bmatrix}$.

For part (b), the rank of the matrix is $2 +$ nullspace $= 4$ (number of columns). Thus $x_3$, and $x_4$ will be scalars so let $x_3=s$,$x_4=t$.

For given values of $b_1=6$,$b_2=7$,$b_3=4$ we have the augmented matrix: \begin{bmatrix} 1&0&\frac{11}{3}&-\frac{11}{3}&6\\ 0&1&\frac{1}{3}&\frac{5}{3}&1\\ 0&0&0&0&0\\ \end{bmatrix}

$\Rightarrow \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}x_1+\begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}x_2+\begin{bmatrix} \frac{1}{3}\\ \frac{1}{3}\\ 0 \end{bmatrix}s+\begin{bmatrix} \frac{-11}{3}\\ \frac{5}{3}\\ 0 \end{bmatrix}t=\begin{bmatrix} 6\\ 1\\ 0 \end{bmatrix}$

$x_1+0x_2+\frac{11}{3}s - \frac{11}{3}t = 6$; $x_1 = 6-\frac{11}{3}s+\frac{11}{3}t$

$0x_1+x_2+\frac{1}{3}s+\frac{5}{3}t = 1$; $x_2= 1- \frac{1}{3}s-\frac{5}{3}t$

$x_3=s$

$x_4=t$

Not sure, does this answer (b)?

$\endgroup$
2
  • 1
    $\begingroup$ From the first part, you should have found $b_3-b_2+\dfrac{1}{2}b_1$ (sign error?) in that last entry, which must be zero for there to be a solution, so we need $b_3-b_2+\dfrac{1}{2}b_1 = 0 \implies b_1 = 2 (b_2 - b_3)$ $\endgroup$ Commented Mar 3, 2017 at 6:53
  • 1
    $\begingroup$ Now I am sure you have a sign error as I show above, cause for the second part, you should get $$ \begin{bmatrix} 1 & 0 & \dfrac{11}{3} & -\dfrac{11}{3} & 6 \\ 0 & 1 & \dfrac{1}{3} & \dfrac{5}{3} & 1 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}$$ This makes $x_3$ and $x_4$ free variables. $\endgroup$ Commented Mar 3, 2017 at 6:59

1 Answer 1

1
$\begingroup$

Row reduction of matrix

Find the fundamental columns.

Reorder rows to simplify arithmetic.

$$ % E \left[ \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{array} \right] % A \left[ \begin{array}{crrr} 0 & 6 & 2 & 10 \\ 1 & 1 & 4 & -2 \\ 1 & -2 & 3 & -7 \\ \end{array} \right] % = % PA \left[ \begin{array}{crrr} 1 & -2 & 3 & -7 \\ 1 & 1 & 4 & -2 \\ 0 & 6 & 2 & 10 \\ \end{array} \right] % $$

Clear column 1: $$ % E \left[ \begin{array}{rcc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right] % PA \left[ \begin{array}{crrr} 1 & -2 & 3 & -7 \\ 1 & 1 & 4 & -2 \\ 0 & 6 & 2 & 10 \\ \end{array} \right] % = % A \left[ \begin{array}{crcr} 1 & -2 & 3 & -7 \\ 0 & 3 & 1 & 5 \\ 0 & 6 & 2 & 10 \\ \end{array} \right] % $$

Clear column 2: $$ % E \left[ \begin{array}{cc c} 1 & \frac{2}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & -2 & 1 \\ \end{array} \right] % PA \left[ \begin{array}{crcr} 1 & -2 & 3 & -7 \\ 0 & 3 & 1 & 5 \\ 0 & 6 & 2 & 10 \\ \end{array} \right] % = % A \left[ \begin{array}{cccc} 1 & 0 & \frac{11}{3} & -\frac{11}{3} \\ 0 & 1 & \frac{1}{3} & \frac{5}{3} \\ 0 & 0 & 0 & 0 \\ \end{array} \right] % $$ Result $$ % \begin{align} \mathbf{A} &\mapsto \mathbf{E_{A}} \\ % \left[ \begin{array}{crrr} 0 & 6 & 2 & 10 \\ 1 & 1 & 4 & -2 \\ 1 & -2 & 3 & -7 \\ \end{array} \right] % &\mapsto % \left[ \begin{array}{cccc} \boxed{1} & 0 & \frac{11}{3} & -\frac{11}{3} \\ 0 & \boxed{1} & \frac{1}{3} & \frac{5}{3} \\ 0 & 0 & 0 & 0 \\ \end{array} \right] % \end{align} % $$ The boxed pivots reveal the fundamental columns: $1$ and $2$.


(a) For a data vector $b$ to reside in the range space of the columns, it must be a linear combination of the fundamental columns:

$$ \boxed{ b\in\mathcal{R}\left( \mathbf{A} \right) \quad \iff \quad b = \alpha \left[ \begin{array}{c} 0 \\ 1 \\ 1 \\ \end{array} \right] + \beta \left[ \begin{array}{r} 6 \\ 1 \\ -2 \\ \end{array} \right] } % \tag{1} $$ where $\alpha$ and $\beta$ are arbitrary constants.


(b) What are the restriction on $b_{1}$ so that the following vector resides in the range space of the columns? $$ b= \left[ \begin{array}{c} b_{1} \\ \color{blue}{7} \\ \color{blue}{4} \\ \end{array} \right] = \alpha \left[ \begin{array}{c} 0 \\ \color{blue}{1} \\ \color{blue}{1} \\ \end{array} \right] + \beta \left[ \begin{array}{r} 6 \\ \color{blue}{1} \\ \color{blue}{-2} \\ \end{array} \right] $$ There are a couple of ways to attack this problem, one of which is to solve the matrix equation $$ % \left[ \begin{array}{cr} \color{blue}{1} & \color{blue}{1} \\ \color{blue}{1} & \color{blue}{-2} \\ \end{array} \right] %% \left[ \begin{array}{r} \alpha \\ \beta \\ \end{array} \right] %% = \left[ \begin{array}{c} \color{blue}{7} \\ \color{blue}{4} \\ \end{array} \right] %% $$

The solution is $$ \left[ \begin{array}{r} \alpha \\ \beta \\ \end{array} \right] = \frac{1}{3} \left[ \begin{array}{cr} 2 & 1 \\ 1 & -1 \\ \end{array} \right] \left[ \begin{array}{c} 7 \\ 4 \\ \end{array} \right] % = \left[ \begin{array}{c} 6 \\ 1 \\ \end{array} \right] $$ Put the mixing constants into $(1)$ $$ 6 \left[ \begin{array}{c} 0 \\ 1 \\ 1 \\ \end{array} \right] + 1 \left[ \begin{array}{r} 6 \\ 1 \\ -2 \\ \end{array} \right] % = \left[ \begin{array}{r} 6 \\ 7 \\ 4 \\ \end{array} \right] % $$ This shows that $$ \boxed{ b_{1} = 6 } $$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.