I'd like to find the correlation matrix of $Y_1$ and $Y_2$, for $Y_1=X_1+X_2$ and $Y_2=X_1-X_2$, where $X_1$ and $X_2$ are random variable with correlation matrix $\Omega_X=\begin{pmatrix} 1 & \rho\\ \rho & 1 \end{pmatrix} $, where $-1\leq \rho \leq 1$.
Here is my what I did:
I think that since the main diagonal entries are equal to 1, $\Omega_X=\Sigma_X$. Then, I apply the Cholesky decomposition: $\Sigma_X=U^t\,U$
$\begin{pmatrix} X_1\\ X_2 \end{pmatrix} = U^t \, \begin{pmatrix} Z_1\\ Z_2 \end{pmatrix}$, $Z_1$ and $Z_2$ are independent standard normal variables.
$\Rightarrow \begin{pmatrix} X_1\\ X_2 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ \rho & \sqrt{1-\rho^2} \end{pmatrix} \, \begin{pmatrix} Z_1\\ Z_2 \end{pmatrix} $
$\Rightarrow \begin{cases} X_1 = Z_1\\ X_2 = \rho\,Z_1 + \sqrt{1-\rho^2}Z_2 \end{cases} $
$ \Rightarrow \begin{cases} Y_1 = (1+\rho)\,Z_1 + \sqrt{1-\rho^2}\,Z_2\\ Y_2 = (1-\rho)\,Z_1 - \sqrt{1-\rho^2}\,Z_2 \end{cases} $
I deduce: $Y_1 \sim N(0,2\rho+2)$ and $Y_2 \sim N(0,2-2\rho)$
But I am not able to get corr($Y_1$,$Y_2$).
Any hint about what I'm doing wrong? Thank you