I'm reading some notes on measure theory and am trying to understand a proof of a theorem that says:
Given a measurable function $f : \Omega \rightarrow \mathbb{R}$, there exists a sequence of isotone simple functions $(f_i)_{i \in \mathbb{N}}$ such that for each $x \in \Omega, \lim_{i\to\infty}f_i(x) = f(x)$.
The notes say they will prove this fact by proving there exists a family of sets $\{A_i\}_{i\in\mathbb{N}}$ such that $$f = \sum_{k=1}^\infty \frac{1}{k} \chi_{A_k}$$.
I understand all of the steps the proof takes after this, but I did not understand how proving such a family of sets exists proves the theorem.