$$y \,=\, \dfrac{-3}{\sqrt[\large 3]{x}} \,= \,-3x^{-1/3}$$
Now use the power rule to differentiate y with respect to x:
Let $c$ be a constant. Then for any $n \neq 0$, (including $n = \pm \dfrac ab $, where $a, b\neq 0$ ) $$\large y = c\,x^{\,n} \;\implies\; \frac{dy}{dx} =n\cdot c\,x^{\,n-1}$$
In your case, $\;c = -3,\;$ and $\;n\, =\, -\dfrac{1}{3}$.
Applied here, we have $$y \,=\,-3x^{-1/3}\;\;\implies\;\;\frac{dy}{dx} = -(1/3)(-3)\,\large x^{-\large\frac13 - 1} = x^{\large -\frac13 - \large\frac33} = x^{-\frac 43} = \frac{1}{x^{(4/3)}}$$