Find first the eigenvalues of $A$, these are the roots of the characteristic polynomial of $A$, $$ (x-10)(x-1)(x+4)\ . $$ So the eigenvalues are $10$, $1$, $-4$. We subtract them from the diagonal and search for eigenvectors. Here are my choices: $$ \begin{aligned} \begin{bmatrix} 3-10 & 0 & 7\\ 0& 1-10 & 0\\ 7 & 0 & 3-10 \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix} &= \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \ ,\\ \begin{bmatrix} 3-1 & 0 & 7\\ 0& 1-1 & 0\\ 7 & 0 & 3-1 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} &= \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \ , \\ \begin{bmatrix} 3-(-4) & 0 & 7\\ 0& 1-(-4) & 0\\ 7 & 0 & 3-(-4) \end{bmatrix} \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} &= \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \ ,\\ \end{aligned} $$ Equivalently, $$ \begin{aligned} \begin{bmatrix} 3 & 0 & 7\\ 0& 1 & 0\\ 7 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix} &= \begin{bmatrix} 1\\0\\1 \end{bmatrix} \cdot[10] \ ,\\ \begin{bmatrix} 3 & 0 & 7\\ 0& 1 & 0\\ 7 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} &= \begin{bmatrix} 0\\1\\0 \end{bmatrix} \cdot [1] \ , \\ \begin{bmatrix} 3 & 0 & 7\\ 0& 1 & 0\\ 7 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} &= \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} [-4] \ ,\\ \end{aligned} $$ equalities of products of matrices of the shape $(3\times 3)\cdot(3\times 1)$, and respectively $(3\times 1)\cdot(1\times 1)$.
Now consider the matrix built from the eigenvectors, taken as columns. We have the block matrix computation, subsumming the above three equalities: $$ \underbrace{ \begin{bmatrix} 3 & 0 & 7\\ 0& 1 & 0\\ 7 & 0 & 3 \end{bmatrix}}_A \underbrace{ \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 1& 0& -1 \end{bmatrix}}_S = \underbrace{ \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 1& 0& -1 \end{bmatrix}}_S \underbrace{ \begin{bmatrix} 10 & & \\ &1 & \\ & & -4 \end{bmatrix}}_D \ . $$ We have $AS=SD$, so the above choices answer the request.