Ref: "Theoretical Physics" by Joos.
Let ${ \vec{V}(\vec{r}) }$ be a smooth vector field.
Consider a nice closed surface ${ S . }$ Consider a nice directed loop ${ L . }$
We are often interested in the quantities
$${ {\begin{aligned} &\, \text{Flux:} \quad \quad \oint _{S} \vec{V} \cdot d\vec{A}, \\ &\, \text{Work:} \quad \quad \oint _{L} \vec{V} \cdot d\vec{\ell} . \end{aligned}} }$$
Q) Can we convert the surface and line integrals as "volume integrals"
$${ {\begin{aligned} &\, \oint _S \vec{V} \cdot d \vec{A} = \int _{\text{inside } S} (?) \, dV \\ &\, \oint _L \vec{V} \cdot d \vec{\ell} = \int _{\text{inside } L} (?) \, dA \end{aligned}} }$$
It turns out yes.
[Flux]
What is ${ \oint \vec{V} \cdot d\vec{A} }$ over a small cube
Note that
$${ {\begin{aligned} &\, \oint _{\text{small cube}} \vec{V} \cdot d\vec{A} \\ = &\, \left[ \left( V _y + \partial _y V _y \frac{\Delta y}{2} (\Delta x \Delta z) \right) - \left( V _y - \partial _y V _y \frac{\Delta y}{2} (\Delta x \Delta z) \right) \right] \\ &\, + \text{other terms} \\ = &\, \partial _x V _x \Delta x \Delta y \Delta z + \partial _y V _y \Delta x \Delta y \Delta z + \partial _z V _z \Delta x \Delta y \Delta z . \end{aligned}} }$$
Approximate the inside of ${ S }$ by a collection of axis aligned cubes.
Note that
$${ {\begin{aligned} &\, \oint _{\text{cubes}} \vec{V} \cdot d\vec{A} \\ = &\, \sum (\partial _x V _x + \partial _y V _y + \partial _z V _z ) \Delta x \Delta y \Delta z . \end{aligned}} }$$
Hence in the limit
$${ \boxed{\oint _S \vec{V} \cdot d\vec{A} = \int _{\text{inside } S} \text{div}(\vec{V}) \, dV } }$$
where
$${ \boxed{ \text{div}(\vec{V}) = \partial _x V _x + \partial _y V _y + \partial _z V _z } . }$$
[Line integral]
What is ${ \oint \vec{V} \cdot d\vec{\ell} }$ over a small rectangular loop
Note that
$${ {\begin{aligned} &\, \oint _{\text{small loop}} \vec{V} \cdot d \vec{\ell} \\ = &\, \left[ \vec{V} - {\begin{pmatrix} \sum \partial _i V _x \frac{(\Delta \vec{b}) _i}{2} \\ \vdots \\ \sum \partial _i V _z \frac{(\Delta \vec{b}) _i}{2} \end{pmatrix}} \right] \cdot \Delta \vec{a} + \left[ \vec{V} + {\begin{pmatrix} \sum \partial _i V _x \frac{(\Delta \vec{b}) _i}{2} \\ \vdots \\ \sum \partial _i V _z \frac{(\Delta \vec{b}) _i}{2} \end{pmatrix}} \right] \cdot (- \Delta \vec{a}) \\ &\, + \text{other terms} \\ = &\, - {{\begin{pmatrix} \sum \partial _i V _x (\Delta \vec{b}) _i \\ \vdots \\ \sum \partial _i V _z (\Delta \vec{b}) _i \end{pmatrix}}} \cdot \Delta \vec{a} + {{\begin{pmatrix} \sum \partial _i V _x (\Delta \vec{a}) _i \\ \vdots \\ \sum \partial _i V _z (\Delta \vec{a}) _i \end{pmatrix}}} \cdot \Delta \vec{b} \\ = &\, - \sum _{j} \sum _{i} \partial _i V _j (\Delta \vec{b}) _i (\Delta \vec{a} ) _j + \sum _{j} \sum _{i} \partial _{i} V _j (\Delta \vec{a}) _i (\Delta \vec{b}) _j \\ = &\, \sum _j \sum _i \partial _i V _j \left( (\Delta \vec{a}) _i (\Delta \vec{b}) _j - (\Delta \vec{b}) _i (\Delta \vec{a} ) _j \right) . \end{aligned}} }$$
Hence
$${ {\begin{aligned} &\, \oint _{\text{small loop}} \vec{V} \cdot d \vec{\ell} \\ = &\, \sum _j \sum _i \partial _i V _j \left( (\Delta \vec{a}) _i (\Delta \vec{b}) _j - (\Delta \vec{b}) _i (\Delta \vec{a} ) _j \right) . \end{aligned}} }$$
Note that for all distinct ${ \lbrace i, j \rbrace }$ we have the terms
$${ (\partial _i V _j - \partial _j V _i) \left( (\Delta \vec{a}) _i (\Delta \vec{b}) _j - (\Delta \vec{b}) _i (\Delta \vec{a} ) _j \right) . }$$
Hence
$${ {\begin{aligned} &\, \oint _{\text{small loop}} \vec{V} \cdot d \vec{\ell} \\ = &\, \sum _{\text{distinct } \lbrace i, j \rbrace} (\partial _i V _j - \partial _j V _i) \left( (\Delta \vec{a}) _i (\Delta \vec{b}) _j - (\Delta \vec{b}) _i (\Delta \vec{a} ) _j \right) \\ = &\, {\begin{vmatrix} \hat{i} &\hat{j} &\hat{k} \\ \partial _1 &\partial _2 &\partial _3 \\ V _1 &V _2 &V _3 \end{vmatrix} } \cdot {\begin{vmatrix} \hat{i} &\hat{j} &\hat{k} \\ (\Delta \vec{a}) _1 &(\Delta \vec{a}) _2 &(\Delta \vec{a}) _3 \\ (\Delta \vec{b}) _1 &(\Delta \vec{b}) _2 &(\Delta \vec{b}) _3 \end{vmatrix} } . \end{aligned}} }$$
Hence
$${ \oint _{\text{small loop}} \vec{V} \cdot d \vec{\ell} = \text{curl}(\vec{V}) \cdot \Delta \vec{A} }$$
where
$${ \text{curl}(\vec{V}) = {\begin{vmatrix} \hat{i} &\hat{j} &\hat{k} \\ \partial _1 &\partial _2 &\partial _3 \\ V _1 &V _2 &V _3 \end{vmatrix} } . }$$
Approximate the inside of ${ L }$ be a collection of edge aligned small loops.
Note that
$${ \oint _{\text{loops}} \vec{V} \cdot d\vec{\ell} = \sum \text{curl}(\vec{V}) \cdot \Delta \vec{A} . }$$
Hence in the limit
$${ \boxed{\oint _{L} \vec{V} \cdot d\vec{\ell} = \int _{\text{inside } L} \text{curl}(\vec{V}) \cdot d\vec{A} } }$$
where
$${ \boxed{ \text{curl}(\vec{V}) = {\begin{vmatrix} \hat{i} &\hat{j} &\hat{k} \\ \partial _1 &\partial _2 &\partial _3 \\ V _1 &V _2 &V _3 \end{vmatrix} } }. }$$
[Summary]
Let ${ \vec{V}(\vec{r}) }$ be a smooth vector field.
Consider a nice closed surface ${ S . }$ Consider a nice directed loop ${ L . }$
Note that the flux
$${ \boxed{\oint _S \vec{V} \cdot d\vec{A} = \int _{\text{inside } S} \text{div}(\vec{V}) \, dV } }$$
where
$${ \boxed{ \text{div}(\vec{V}) = \partial _x V _x + \partial _y V _y + \partial _z V _z } . }$$
Note that the work
$${ \boxed{\oint _{L} \vec{V} \cdot d\vec{\ell} = \int _{\text{inside } L} \text{curl}(\vec{V}) \cdot d\vec{A} } }$$
where
$${ \boxed{ \text{curl}(\vec{V}) = {\begin{vmatrix} \hat{i} &\hat{j} &\hat{k} \\ \partial _1 &\partial _2 &\partial _3 \\ V _1 &V _2 &V _3 \end{vmatrix} } }. }$$
[Nabla operator]
Let ${ \vec{V}(\vec{r}) }$ be a smooth vector field.
Note that
$${ {\begin{aligned} &\, \text{div}(\vec{V}) = \partial _1 V _1 + \partial _2 V _2 + \partial _3 V _3 \, , \\ &\, \text{curl}(\vec{V}) = {\begin{vmatrix} \hat{i} &\hat{j} &\hat{k} \\ \partial _1 &\partial _2 &\partial _3 \\ V _1 &V _2 &V _3 \end{vmatrix} }. \end{aligned}} }$$
Hence formally defining the "operator vector"
$${ \boxed{\vec{\nabla} = {\begin{pmatrix} \partial _1 &\partial _2 &\partial _3 \end{pmatrix}} } }$$
we have
$${ \boxed{{\begin{aligned} &\, \text{div}(\vec{V}) = \vec{\nabla} \cdot \vec{V}, \\ &\, \text{curl}(\vec{V}) = \vec{\nabla} \times \vec{V} \end{aligned}}} . }$$