Since we want to consider continuity at a single fixed point $x_0$, we may assume that $x_0\in(a,b)$ for certain $0<a<1<b$.
Assume $x\in(a,b)$. Using the Mean Value Theorem, there exists $\xi$ between $x$ and $x_0$ such that $$ t^{x-1}-t^{x_0-1}=(\log t)\,t^{\xi-1}\,(x-x_0). $$ So $$ |t^{x-1}-t^{x_0-1}|\leq|(\log t)\,(t^{1-a}+t^{b-1})|\,|x-x_0|. $$ The estimate for $t^{\xi-1}$ is obtained by considering $t<1$ and $t>1$ respectively.
Now \begin{align} \left|\Gamma(x)-\Gamma(x_0)\right| &\leq\int_0^\infty |t^{x-1}-t^{x_0-1}|\,e^{-t}\,dt\\ \ \\ &\leq|x-x_0|\,\int_0^\infty|(\log t)\,(t^{1-a}+t^{b-1})|\,e^{-t}\,dt\tag{1}\\ \ \\ &\leq\,|x-x_0|\,\left(\frac1{(2-a)^2}+\frac1{b^2}+\frac{2c}{\sqrt e}\right) \end{align}
(see below), and so $\Gamma$ is continuous at $x_0$. Note that $(1)$ is a Lipschitz condition, but it is local: in the sense that the constant depends on $a$ and $b$.
Note that $$\tag{2} \left|\int_0^1 t^r\,\log t\,dt\right|<\infty \iff r>-1. $$
Since $0<a<1$ and $b>0$, we have $1-a>0$ and $b-1>-1$. By $(2)$, then $$\tag{3} \int_0^1|(\log t)\,(t^{1-a}+t^{b-1})|\,e^{-t}\,dt\leq-\int_0^1\log t\,(t^{1-a}+t^{b-1})\,dt=\frac1{(2-a)^2}+\frac1{b^2} $$ Let $$c=\sup\{|\log t\,(t^{1-a}+t^{b-1})e^{-t/2}|:\ t\in(0,\infty)\}$$ (the sup exists because the function is continuous and bounded, since both the limits at $0$ and $\infty$ exist). Then \begin{align}\tag{4} \int_1^\infty|(\log t)\,(t^{1-a}+t^{b-1})|\,e^{-t}\,dt &=\int_1^\infty|(\log t)\,(t^{1-a}+t^{b-1})|\,e^{-t/2}\,e^{-t/2}\,dt\\ \ \\ &\leq c\,\int_1^\infty e^{-t/2}\,dt=\frac{2c}{\sqrt e}. \end{align} Using $(3)$ and $(4)$, we get $$ \int_0^\infty|(\log t)\,(t^{1-a}+t^{b-1})|\,e^{-t}\,dt\leq\frac1{(2-a)^2}+\frac1{b^2}+\frac{2c}{\sqrt e}. $$