Suppose we have a filter $L$ defined by $(L\circ x)_n=(x\ast h)_n,$ where $$h_n=\begin{cases}\frac{\sin(\frac{\pi}{6}n)+\sin(\frac{\pi}{2}n)}{\pi n},&n\neq 0,\\ 2/3,&n=0.\end{cases}$$ Here $n$ is an integer. Determine the output of this filter with the input $x_n=\sin(\frac{\pi}{8}n)-3\cos(\frac{\pi}{4}n).$
My attempt: First I tried to calculate the discrete-time Fourier transform of both $x$ and $h$, namely, $$X(e^{i\lambda})=\sum_{n\in\mathbb{Z}}\left(\sin(\frac{\pi}{8}n)-3\cos(\frac{\pi}{4}n)\right)e^{-in\lambda}$$ and $$H(e^{i\lambda})=\sum_{n\in\mathbb{Z}}\left(\frac{\sin(\frac{\pi}{6}n)+\sin(\frac{\pi}{2}n)}{\pi n}\right)e^{-in\lambda}.$$
Since the Fourier transform of the convolution is equal to the product of Fourier transforms, the DTFT of $x\ast h$ is $X(e^{i\lambda})H(e^{i\lambda}).$
However, how should I calculate this product and take the inverse transform?
Thanks in advance!