1
$\begingroup$

Let $\epsilon_\pm \ge 1$ be real numbers. Consider a following random variable: \begin{equation} {\mathcal R}:= \frac{1-Z}{Z} \cdot \Xi \quad (i) \end{equation} where $Z \in (0,1)$ is a random variable with a density $\rho_Z(z) = z^{\epsilon_+-1} (1-z)^{\epsilon_--1} /B(\epsilon_-,\epsilon_+)$ and $\Xi$ is a uniform random variable , i.e. $\Xi = U(0,1)$. Both variables $Z$ and $\Xi$ are independent and $B(\cdot,\cdot)$ is the beta function.

We have shown that the probability density of the variable $R$ is given as follows: \begin{equation} \rho_R(x) = \frac{x^{-1-\epsilon_+}}{(1+\epsilon_+) B(\epsilon_-,\epsilon_+)} \cdot _2F_1\left(\epsilon_++1,\epsilon_-+\epsilon_+;\epsilon_++2;-\frac{1}{x}\right) \cdot 1_{x \ge 0} \quad (ii) \end{equation}

Now, the natural thing is to check the normalization of the pdf above. If we now use the functional identity http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/02/09/0002/ and the series expansion of the hypergeometric function and integrate term by term then after some manipulations we arrive at a following identity:

\begin{eqnarray} B_{\frac{1}{2}}(\epsilon_--1,\epsilon_++1)-B_{\frac{1}{2}}(\epsilon_-,\epsilon_+)-B_{\frac{1}{2}}(\epsilon_+,\epsilon_-)+B_{\frac{1}{2}}(\epsilon_++1,\epsilon_--1) = -\frac{(\epsilon_--\epsilon_+-1) \Gamma (\epsilon_--1) \Gamma (\epsilon_+)}{\Gamma (\epsilon_-+\epsilon_+)} \quad (iii) \end{eqnarray} where $B_z(\cdot,\cdot)$ is the incomplete beta function.

In[566]:= {em, ep} = RandomReal[{1, 10}, 2, WorkingPrecision -> 50]; ( (ep - em + 1) Gamma[em - 1] Gamma[ep])/ Gamma[em + ep] + (NIntegrate[(t^(ep - 1) - t^(em - 2)) (1 - t) (1 + t)^(-em - ep), {t, 0, 1}, WorkingPrecision -> 30]) ((-1 + em - ep) Gamma[-1 + em] Gamma[ep])/ Gamma[em + ep] - (-Beta[1/2, em - 1, ep + 1] + Beta[1/2, em, ep] + Beta[1/2, ep, em] - Beta[1/2, ep + 1, em - 1]) Out[567]= 0.*10^-32 Out[568]= 0.*10^-50 

Now, I have two questions. The first one is simple, i.e.how do we prove the identity $(iii)$ otherwise?

The second question is related to the moments of the distribution of ${\mathcal R}$. Take some $m \ge 0$ and real. Then from the definition $(i)$ we clearly have: \begin{equation} E\left[ {\mathcal R}^m \right] = \frac{B(\epsilon_-+m,\epsilon_+-m)}{B(\epsilon_-,\epsilon_+)} \cdot \frac{1}{m+1} \end{equation}

Can we actually prove the same result by using the closed form expression $(ii)$ for the pdf of ${\mathcal R}$ ?

$\endgroup$

1 Answer 1

2
$\begingroup$

Here is the answer to the first question.

By using the identity http://functions.wolfram.com/GammaBetaErf/Beta3/17/02/03/0001/ we can write: \begin{eqnarray} lhs &=& B(\epsilon_--1,\epsilon_++1) - B(\epsilon_-,\epsilon_+) \\ &=&\frac{\Gamma(\epsilon_--1) \Gamma(\epsilon_++1)}{\Gamma(\epsilon_-+\epsilon_+)} - \frac{\Gamma(\epsilon_-) \Gamma(\epsilon_+)}{\Gamma(\epsilon_-+\epsilon_+)}\\ &=& \left(\epsilon_+-\epsilon_-+1\right)\frac{\Gamma(\epsilon_--1) \Gamma(\epsilon_+)}{\Gamma(\epsilon_-+\epsilon_+)} = rhs \end{eqnarray}

Now we note the following identity: \begin{equation} F_{2,1} \left[ 1,b,c, z \right] = (c-1) z^{1-c} \cdot (1-z)^{-b-1+c} \cdot \left( B(b-c+1,c-1) - B_{1-z}(b-c+1,c-1) \right) \quad (I) \end{equation} for $b,c \ge 1$ and $-1 < z < 1$.

Here is the answer to the second question. \begin{eqnarray} &&E\left[ {\mathcal R}^m \right]= \int\limits_0^\infty x^m \cdot \rho_{\mathcal R}(x) dx \\ && =\int\limits_0^1 x^m \left( \frac{\epsilon_+}{\epsilon_--1} + \frac{x^{-1-\epsilon_-}}{(1+\epsilon_+)B(\epsilon_+,\epsilon_-)} F_{2,1} \left[-1+\epsilon_-,\epsilon_-+\epsilon_+,\epsilon_-,-x \right]\right) dx + \\ && \int\limits_1^\infty x^m \left( \frac{x^{-1-\epsilon_+}}{(1+\epsilon_+) B(\epsilon_+,\epsilon_-)} F_{2,1} \left[ 1+\epsilon_+,\epsilon_-+\epsilon_+,2+\epsilon_+, -\frac{1}{x}\right] \right) dx \\ &&= \frac{\epsilon_+}{\epsilon_--1} \cdot\frac{1}{m+1}+\\ &&\frac{1}{(1-\epsilon_-)B(\epsilon_-,\epsilon_+)} \frac{1}{m+1} \left( \, _2F_1(\epsilon_--1,\epsilon_-+\epsilon_+;\epsilon_-;-1)-\frac{(\epsilon_--1) \, _2F_1(\epsilon_-+\epsilon_+,\epsilon_-+m;\epsilon_-+m+1;-1)}{\epsilon_-+m} \right)+\\ &&\frac{1}{(1+\epsilon_+) B(\epsilon_+,\epsilon_-)} \frac{1}{m+1} \left( \frac{(\epsilon_++1) \, _2F_1(\epsilon_-+\epsilon_+,\epsilon_+-m;\epsilon_+-m+1;-1)}{\epsilon_+-m}-\, _2F_1(\epsilon_++1,\epsilon_-+\epsilon_+;\epsilon_++2;-1) \right) \\ &&= \frac{1}{m+1} \cdot \frac{B(\epsilon_-+m,\epsilon_+-m)}{B(\epsilon_-,\epsilon_+)} \end{eqnarray} In the second line we used http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/02/09/0002/ and in the third line we integrated term by term the power series expansions. In the last line we firstly used the Pfaff transformation https://en.wikipedia.org/wiki/Hypergeometric_function#Transformation_formulas to reduce the hypergeometric functions to values at one half and then we used the identity $(I)$ to express the later quantities (i.e. the hypergeometric functions at one half) through both beta and incomplete beta functions. Finally we used http://functions.wolfram.com/GammaBetaErf/Beta3/17/02/03/0001/ to simplify the result.

(*The moments.*) {em, ep} = RandomReal[{2, 10}, 2, WorkingPrecision -> 50]; x =.; m = RandomReal[{0, 2}, WorkingPrecision -> 50]; NIntegrate[ x^m (x^(-1 - ep) Hypergeometric2F1[1 + ep, em + ep, 2 + ep, -(1/x)])/((1 + ep) Beta[em, ep]), {x, 0, Infinity}] NIntegrate[ x^m ( ep/(em - 1) + ( x^(-1 + em) Hypergeometric2F1[-1 + em, em + ep, em, -x])/((1 - em) Beta[ em, ep])), {x, 0, 1}] + NIntegrate[ x^m (x^(-1 - ep) Hypergeometric2F1[1 + ep, em + ep, 2 + ep, -(1/x)])/((1 + ep) Beta[em, ep]), {x, 1, Infinity}] ep/(em - 1) 1/(m + 1) + 1/((1 - em) Beta[em, ep]) 1/( m + 1) (Hypergeometric2F1[-1 + em, em + ep, em, -1] - (em - 1)/( em + m) Hypergeometric2F1[m + em, em + ep, em + m + 1, -1]) + 1/((1 + ep) Beta[em, ep]) 1/( m + 1) ((ep + 1)/(ep - m) Hypergeometric2F1[ep - m, em + ep, ep - m + 1, -1] - Hypergeometric2F1[ep + 1, em + ep, ep + 2, -1]) ep/(em - 1) 1/(m + 1) + 1/((1 - em) Beta[em, ep]) 1/( m + 1) (2^(-em - ep) Hypergeometric2F1[1, em + ep, em, 1/2] - ( em - 1)/(em + m) 2^(-em - ep) Hypergeometric2F1[em + ep, 1, 1 + em + m, 1/2]) + 1/((1 + ep) Beta[em, ep]) 1/( m + 1) ((ep + 1)/(ep - m) 2^(-em - ep) Hypergeometric2F1[em + ep, 1, ep - m + 1, 1/2] - 2^(-em - ep) Hypergeometric2F1[em + ep, 1, ep + 2, 1/2]) ep/(em - 1) 1/(m + 1) + 1/ Beta[em, ep] 1/( m + 1) (-Beta[-1 + em, 1 + ep] - Beta[1 + ep, -1 + em] + Beta[ep - m, em + m] + Beta[em + m, ep - m] + Beta[1/2, -1 + em, 1 + ep] + Beta[1/2, 1 + ep, -1 + em] - Beta[1/2, ep - m, em + m] - Beta[1/2, em + m, ep - m]) 1/(m + 1) (Beta[em + m, ep - m]/Beta[em, ep]) 

enter image description here

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.