0
$\begingroup$

I need some help going over this problem because I'm not entirely sure if my solution is sound.

Let $$\phi:\mathbb{R^2} \rightarrow \mathbb{R^2},\begin{pmatrix} x\\y \end{pmatrix} \mapsto \begin{pmatrix} \frac{3}{2}x- \frac{1}{2}y \\ -\frac{1}{2}x+\frac{3}{2}y \end{pmatrix} $$

a) Show that there exists a basis $B$ of $\mathbb{R^2}$ such that the transformation matrix is equal to ${^B}A_\phi^B= \begin{pmatrix} 1&0 \\ 0&2 \end{pmatrix}$.

b) Show that the set $Z= \bigg\{T\in GL_2(\mathbb{R})| \ T \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end {pmatrix}T^{-1} = \begin{pmatrix} 1&0 \\ 0&2 \end{pmatrix} \bigg\} $ is not empty.

c) Show that $\forall \ T\in Z$ and $\forall \lambda\in \mathbb{R}- \{0 \}$ also $ \lambda T \in Z$ is.

d) For any $T_1,T_2 \in Z$ does a $\lambda \in \mathbb{R}-\{0\}$ exist such that $T_2=\lambda T_1 $?

My work:

a) Let $B=\{B_1,B_2\}$ be a basis for $\mathbb{R^2}$ with $B_1= \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, B_2= \begin{pmatrix} b_3 \\ b_4 \end{pmatrix}$. We find the image of $B_1$ and $B_2$ and then express them in terms of the basis with real coefficients $p_i,q_i$.

$$ \phi(B_1)= \begin{pmatrix} \frac{3}{2}b_1-\frac{1}{2}b_2 \\ -\frac{1}{2}b_1+\frac{3}{2}b_2 \end{pmatrix}= p_1\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}+ p_2\begin{pmatrix} b_3 \\ b_4 \end{pmatrix}$$

$$\phi(B_2)= \begin{pmatrix} \frac{3}{2}b_3-\frac{1}{2}b_4 \\ -\frac{1}{2}b_3+\frac{3}{2}b_4 \end{pmatrix}= p_1\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}+ p_2\begin{pmatrix} b_3 \\ b_4 \end{pmatrix} $$

Since the transformation matrix has been given we find the coefficients as follows: $p_1=1,p_2=0,q_1=0,q_2=2$. Which simply means that $\phi(B_1)=B_1, \phi(B_2)=2B_2$. I then simply chose the vectors $\begin{pmatrix} 2\\2 \end{pmatrix}$, $\begin{pmatrix} 2\\-2 \end{pmatrix}$.

b) This question was much easier and I guessed, correctly, that the matrix $\begin{pmatrix} 2 &2 \\2&-2 \end{pmatrix}$ was an element of the set.

The last two parts of this problem is where I need help. I tried simply computing the results of $\lambda T \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end {pmatrix}T^{-1} $ but it got quickly very complicated and I was wondering if there was an easier way to show it?

$\endgroup$

1 Answer 1

1
$\begingroup$

c) If $T\in Z$ and $\lambda\in\Bbb R\setminus\{0\}$, then\begin{align}(\lambda T)\begin{bmatrix}\frac32&-\frac12\\-\frac12&\frac32\end{bmatrix}(\lambda T)^{-1}&=\lambda T\begin{bmatrix}\frac32&-\frac12\\-\frac12&\frac32\end{bmatrix}\lambda^{-1}T^{-1}\\&=\lambda\lambda^{-1}T\begin{bmatrix}\frac32&-\frac12\\-\frac12&\frac32\end{bmatrix}T^{-1}\\&=\begin{bmatrix}1&0\\0&2\end{bmatrix}.\end{align}

d) Not necessarily, since$$\begin{bmatrix}2&2\\2&-2\end{bmatrix},\begin{bmatrix}2&1\\2&-1\end{bmatrix}\in T.$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.