Let $A$ be an $n\times n$ complex matrix and let $A^*$ denote the conjugate transpose of $A$. Then which of the following are true ?
a) If $A$ is invertible, then $tr(A^*A) \neq0$
b) If $tr(A^*A) \neq0$, then $A$ is invertble
c) If $\vert tr(A^*A) \vert < n^2$, then $\vert a_{ij}\vert<1$ for some $i,j$
d) If $tr(A^*A)=0$, then $A$ is the zero matrix
b) is false, since $A=\begin{bmatrix}i & 0\\0 & 0\end{bmatrix}$ is an example for a $2\times 2$ case.
Another thing I know is $rank(A)=rank(A^*A)$.
So how to prove/disprove others? Any help?