0
$\begingroup$

I'm interested in the following Euclidean geometry problem:

$ABCD$ is a cyclic quadrilateral.
$M$ is the midpoint of $CD$.
$N$ is such that $AMBN$ is a harmonic quadrilateral.
$E$ is the intersection of lines $AC$ and $BD$.
$F$ is the intersection of lines $AD$ and $BC$.
Prove that $E,F,N$ are collinear.

From https://web.evanchen.cc/handouts/cmplx/en-cmplx.pdf Lemma 8.

If $A, B, C, D$ lie on the unit circle then the intersection of $\overline{A B}$ and $\overline{C D}$ is given by $$ \frac{a b(c+d)-c d(a+b)}{a b-c d} . $$

Apply this formula to $E=AC\cap BD$ and $F=AD\cap BC$ $$ e=\frac{a c(b+d)-b d(a+c)}{a c-b d}\\ f=\frac{a d(b+c)-b c(a+d)}{a d-b c} $$

According to http://users.math.uoc.gr/~pamfilos/eGallery/problems/HarmonicQuad.html

A cyclic quadrangle $ABCD$ is called harmonic when (considering the points as complex numbers) the cross-ratio $(ABCD)=-1$.

$AMBN$ is a harmonic quadrilateral. So $(AMBN)=-1$. $$ (a - m) (b - n) + (a - n) (b - m)=0\\ m=\frac{c+d}2 $$ Solving for $n$, $$n=\frac{a (-4 b+c+d)+b (c+d)}{2 (a+b-c-d)}$$ To show that $E,F,N$ are collinear, I need to show that $\frac{e-n}{f-n}$ is real. $$\frac{e-n}{f-n}=\frac{a d-b c}{a c-b d}\cdot\frac{2 a b (c+d)-a c (c+3 d)-b d (3 c+d)+2 c d (c+d)}{2 a b (c+d)-a d (3 c+d)-b c (c+3 d)+2 c d (c+d)}$$ Since $A,B,C,D$ lie on the unit circle, $a^*=a^{-1},b^*=b^{-1},c^*=c^{-1},d^*=d^{-1}$, $$\left(\frac{e-n}{f-n}\right)^*=\frac{a^{-1} d^{-1}-b^{-1} c^{-1}}{a^{-1} c^{-1}-b^{-1} d^{-1}}\cdot\frac{2 a^{-1} b^{-1} (c^{-1}+d^{-1})-a^{-1} c^{-1} (c^{-1}+3 d^{-1})-b^{-1} d^{-1} (3 c^{-1}+d^{-1})+2 c^{-1} d^{-1} (c^{-1}+d^{-1})}{2 a^{-1} b^{-1} (c^{-1}+d^{-1})-a^{-1} d^{-1} (3 c^{-1}+d^{-1})-b^{-1} c^{-1} (c^{-1}+3 d^{-1})+2 c^{-1} d^{-1} (c^{-1}+d^{-1})}$$ multiply both the numerator and denominator of the first fraction by $abcd$, multiply both the numerator and denominator of the second fraction by $abc^2d^2$, to get $\left(\frac{e-n}{f-n}\right)^*=\frac{e-n}{f-n}$, so $\frac{e-n}{f-n}$ is real.

Is there a better way to prove that $E,F,N$ are collinear?

enter image description here

$% Mathematica code: % Block[{a=Exp[110Degree I],b=Exp[70Degree I],c=Exp[-20Degree I],d=(-a b+2 a c-b c)/(a-2 b+c),m=(c+d)/2,e=(a c(b+d)-b d(a+c))/(a c-b d),f=(a d(b+c)-b c(a+d))/(a d-b c),n=(2 a b-a m-b m)/(a+b-2 m)},Show[Graphics[Circle[]],Graphics[Line[ReIm/@{d,c,f,d,b,a,c}]],ComplexListPlot[{Callout[a,"a",Above],Callout[b,"b"],Callout[c,"c"],Callout[d,"d",Before],Callout[e,"e",Above],Callout[f,"f"],Callout[m,"m"],Callout[n,"n"]}],Axes->False]]$

$\endgroup$

1 Answer 1

2
$\begingroup$

To show that $\frac{e - n}{f - n}$ is real, it suffices to prove that $\frac{e - n}{f - n} = \overline{\left(\frac{e - n}{f - n}\right)}$ using the formula of $\frac{e - n}{f - n}$ involving only $a, b, c, d$. This is quite doable because for every $w$ on the unit circle, $\bar{w} = \frac{1}{w}$.

Here is another proof that doesn't use a coordinate system. auxiliary picture

Let $J$ be the intersection of $AB$ and $CD$, $H$ be the intersection of $EF$ and $CD$, then $(J, H, D, C) = -1$. Because $M$ is the midpoint of $CD$ and $(J, H, D, C) = -1$, $\overline{JC}\cdot\overline{JD} = \overline{JH}\cdot\overline{JM}$. Moreover, $\overline{JA}\cdot\overline{JB} = \overline{JC}\cdot\overline{JD}$, so $\overline{JA}\cdot\overline{JB} = \overline{JH}\cdot\overline{JM}$, which means $A, B, M, H$ are concyclic.

On the other hand, $(HA, HB, HN, HM) = -1$ (because $AMBN$ is a harmonic quadrilateral), and $(HA, HB, HF, HM) = -1$, so the lines $HF$ and $HN$ are identical. Therefore $E, N, F$ are collinear.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.