0
$\begingroup$

In the book of sakurai Modern Quantum Mechanics they have this $$ \begin{aligned} & \sqrt{(j \mp m)(j \pm m+1)}\left\langle j_1 j_2 ; m_1 m_2 \mid j_1 j_2 ; j, m \pm 1\right\rangle \\ & =\sqrt{\left(j_1 \mp m_1+1\right)\left(j_1 \pm m_1\right)}\left\langle j_1 j_2 ; m_1 \mp 1, m_2 \mid j_1 j_2 ; j m\right\rangle \\ & \quad+\sqrt{\left(j_2 \mp m_2+1\right)\left(j_2 \pm m_2\right)}\left\langle j_1 j_2 ; m_1, m_2 \mp 1 \mid j_1 j_2 ; j m\right\rangle . \end{aligned} \tag 1$$ with $m_1+m_2=m \pm 1$. Then he derive $$ \begin{aligned} & \sqrt{\left(j^{\prime} \pm m^{\prime}\right)\left(j^{\prime} \mp m^{\prime}+1\right)}\left\langle\alpha^{\prime}, j^{\prime}, m^{\prime} \mp 1\right| T_q^{(k)}|\alpha, j m\rangle \\ &=\sqrt{(j \mp m)(j \pm m+1)}\left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right| T_q^{(k)}|\alpha, j, m \pm 1\rangle \\ &+\sqrt{(k \mp q)(k \pm q+1)}\left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right| T_{q \pm 1}^{(k)}|\alpha, j m\rangle . \end{aligned} $$

And continue Compare this with the recursion relation for the Clebsch-Gordan coefficient (1). Note the striking similarity if we substitute $j^{\prime} \rightarrow j$, $m^{\prime} \rightarrow m$, $j \rightarrow j_1$, $m \rightarrow m_1$, $k \rightarrow j_2$, and $q \rightarrow m_2$. Both recursion relations are of the form $\sum_j a_{i j} x_j=0$, that is, first-order linear homogeneous equations with the same coefficients $a_{i j}$. Whenever we have

$$ \sum_j a_{i j} x_j=0, \quad \sum_j a_{i j} y_j=0, $$

we cannot solve for the $x_j$ (or $y_j$ ) individually but we can solve for the ratios; so

$$ \frac{x_j}{x_k}=\frac{y_j}{y_k} \quad \text { or } \quad x_j=c y_j. $$

How did he obtain $$ \frac{x_j}{x_k}=\frac{y_j}{y_k} \ ? $$

$\endgroup$
2
  • 1
    $\begingroup$ Cf. this question $\endgroup$ Commented yesterday
  • $\begingroup$ i posted the question tha question was answered this is a new question $\endgroup$ Commented yesterday

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.