i trying to adjust the "resolution" of the axes of my plots, that is to say, i wants modify the values of y-axis so that I represent the values with two decimals after the point. This are myy two codes:
Plot[solucion[t], {t, 0, 80}, PlotRange -> {0, .55}] ("left image")
or
Plot[solucion[t], {t, 0, 80}, PlotRange -> Full] ("Right image")
The output is the following two images.
The left image correspond to first code "PlotRange -> {0, .55}" but i want that intervals to show as the image of right from origin (0.00,0.05,0.10,...) but using "PlotRange -> Full" the x-axis moves above the origin and i want it not to move from the origin.
My explicit question is how to properly use PlotRange or any other instrcution inside Plot for to adjust the values of my plot??
Is it possible? Could you please help me?
Any suggestions are very appreciated
My complete code is:
H[s_, \[Sigma]_] := Which[s <= 0, 1, s > \[Sigma], 0, True, 1 - s/\[Sigma]] (*Subscript[H, \[Sigma]](s) es una step function modificada que \ determina el I/O de crecimiento/muerte celular en base a la \ compresion donde "s = (\[Psi]-Subscript[\[Psi], 0]) con Subscript[\ \[Psi], 0]=Subscript[\[Phi], n]+Subscript[\[Phi], t]+m*) \[CapitalSigma][Y_, psi0_] := ((Y - psi0)/(1 - Y))*((2 - psi0)/( 1 - psi0)) (*Sigma es una función que mide el estres celular donde \ "Y" es del modulo de Young*) solucion[t_] = With[ {gaman = 0.746, (*reproduccion celulas sanas*) gamat = 0.97, (*reproducion celulas tumorales*) psi0 = 0.75, (*razon de volumen libre de estres*) psin = 0.6, (*valor umbral que detiene el crecimiento c. sanas*) psit = 0.8, (*valor umbral que detiene el crecimiento c. tumolaes*) deltat = 0.03, (*rapidez muerte celulas tumorales*) deltan = 0.1, (*rapidez muerte celulas sanas*) mun = 0.1, (*rapidez reproduccion MEC por celulas sanas*) mut = 0.002, (*rapidez reproduccion MEC por celulas tumorales*) nu = 0.000016, (*coeficiente de degradacion de la MEC por enzimas*) pin = 6000000,(*produccion de enzimas que degradan la MEC por c. sanas*) pit = 3000000,(*produccion de enzimas que degradan la MEC por c. tumorales*) tau = 0.005, (*tiempo de vida medio de las enzimas*) fo = 0.25, (*suministro de oxigeno*) fg = 0.16, (*suministro de glucosa*) betan = 1.2, (*tasa de absorcion de nutrientes celulas \ sanas*)(*variable*) betat = 1.3, (*tasa de absorcion de nutrientes celulas \ tumorales*)(*variable*) \[Sigma] = 0.2}, (*parametro de transciion de Subscript[ H, \[Sigma]](s)=1 y Subscript[H, \[Sigma]](s)=0*) NDSolve[{ fin'[t] == oxi[t]*gaman*fin[t]* H[(fin[t] + fit[t] + mat[t]) - psin, \[Sigma]] - (1 - oxi[t])* deltan*fin[t], fit'[t] == glu[t]*gamat*fit[t]* H[(fin[t] + fit[t] + mat[t]) - psit, \[Sigma]] - (1 - glu[t])* deltat*fit[t], mat'[t] == mun*fin[t]*\[CapitalSigma][fin[t] + fit[t] + mat[t], psi0] + mut*fit[t]*\[CapitalSigma][fin[t] + fit[t] + mat[t], psi0] - nu*enz[t]*mat[t], enz'[t] == pin*fin[t]*\[CapitalSigma][fin[t] + fit[t] + mat[t], psi0] + pit*fit[t]*\[CapitalSigma][fin[t] + fit[t] + mat[t], psi0] - enz[t]/tau, oxi'[t] == -betan*fin[t]*oxi[t] + fo, glu'[t] == -betat*fit[t]*glu[t] + fg, fin[0] == 0.45, fit[0] == 0.005, mat[0] == 0.2, enz[0] == 0.2, oxi[0] == 0.25, glu[0] == 0.16}, {fin[t], fit[t], mat[t], enz[t], oxi[t], glu[t]}, {t, 0, 80}]][[1, 1, 2]] Plot[solucion[t], {t, 0, 80}, PlotRange -> Full] UPDATE
I could solve my problem of other way. i update my post in case someone needs to do the same.
my personal solution to graph was plot different solutions for each case (equation) and together all them using Show and use your proposal in the comments for plot properly my results. Here my code for different cases in a image:
I don't know how close or conclude this post. thx for everyone's help.





Ticks$\endgroup$Ticks -> {Automatic, ChartingScaledTicks["Linear"][##, {10, 10}] &}`. $\endgroup$AxesOrigin -> {0, 0}to get the axes to cross at the origin. $\endgroup$