f[x, y] == 0 can be separated in lhs[y] == rhs[x]. This shows, rhs gets immaginary in a small range of x. So curves do not intersect.
f[x_, y_] = 2 (-4 + x^2) Sinh[(\[Pi] x)/3] + 1/16 (((4 + x^2)^2 + 64 (-4 + x^2) Cos[y] Cosh[(2 \[Pi] x)/3] + 256 x Sin[y] Sinh[(2 \[Pi] x)/3]) Sinh[\[Pi] x] - 2 (4 + x^2)^2 Sinh[(5 \[Pi] x)/ 3] + (-12 + x^2)^2 Sinh[(7 \[Pi] x)/3]); eq = Equal @@@ (First@ Solve[f[x, y] == 0 && Sin[y]^2 + Cos[y]^2 == 1, Cos[y], Sin[y]]) // First (* Cos[y] == (-65536 Cosh[(2 \[Pi] x)/3] Sinh[(\[Pi] x)/ 3] Sinh[\[Pi] x] + 32768 x^2 Cosh[(2 \[Pi] x)/3] Sinh[(\[Pi] x)/3] Sinh[\[Pi] x] - 4096 x^4 Cosh[(2 \[Pi] x)/3] Sinh[(\[Pi] x)/3] Sinh[\[Pi] x] + 8192 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x]^2 + 2048 x^2 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x]^2 - 512 x^4 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x]^2 - 128 x^6 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x]^2 - 16384 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] - 4096 x^2 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] + 1024 x^4 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] + 256 x^6 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] + 73728 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/3] - 30720 x^2 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/3] + 3584 x^4 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/3] - 128 x^6 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/ 3] - \[Sqrt]((65536 Cosh[(2 \[Pi] x)/3] Sinh[(\[Pi] x)/ 3] Sinh[\[Pi] x] - 32768 x^2 Cosh[(2 \[Pi] x)/3] Sinh[(\[Pi] x)/ 3] Sinh[\[Pi] x] + 4096 x^4 Cosh[(2 \[Pi] x)/3] Sinh[(\[Pi] x)/ 3] Sinh[\[Pi] x] - 8192 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x]^2 - 2048 x^2 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x]^2 + 512 x^4 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x]^2 + 128 x^6 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x]^2 + 16384 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/ 3] + 4096 x^2 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[( 5 \[Pi] x)/3] - 1024 x^4 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/ 3] - 256 x^6 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[( 5 \[Pi] x)/3] - 73728 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/ 3] + 30720 x^2 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[( 7 \[Pi] x)/3] - 3584 x^4 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/ 3] + 128 x^6 Cosh[(2 \[Pi] x)/3] Sinh[\[Pi] x] Sinh[( 7 \[Pi] x)/3])^2 - 4 (65536 Cosh[(2 \[Pi] x)/3]^2 Sinh[\[Pi] x]^2 - 32768 x^2 Cosh[(2 \[Pi] x)/3]^2 Sinh[\[Pi] x]^2 + 4096 x^4 Cosh[(2 \[Pi] x)/3]^2 Sinh[\[Pi] x]^2 + 65536 x^2 Sinh[(2 \[Pi] x)/ 3]^2 Sinh[\[Pi] x]^2) (16384 Sinh[(\[Pi] x)/3]^2 - 8192 x^2 Sinh[(\[Pi] x)/3]^2 + 1024 x^4 Sinh[(\[Pi] x)/3]^2 - 4096 Sinh[(\[Pi] x)/3] Sinh[\[Pi] x] - 1024 x^2 Sinh[(\[Pi] x)/3] Sinh[\[Pi] x] + 256 x^4 Sinh[(\[Pi] x)/3] Sinh[\[Pi] x] + 64 x^6 Sinh[(\[Pi] x)/3] Sinh[\[Pi] x] + 256 Sinh[\[Pi] x]^2 + 256 x^2 Sinh[\[Pi] x]^2 + 96 x^4 Sinh[\[Pi] x]^2 + 16 x^6 Sinh[\[Pi] x]^2 + x^8 Sinh[\[Pi] x]^2 - 65536 x^2 Sinh[(2 \[Pi] x)/3]^2 Sinh[\[Pi] x]^2 + 8192 Sinh[(\[Pi] x)/3] Sinh[(5 \[Pi] x)/3] + 2048 x^2 Sinh[(\[Pi] x)/3] Sinh[(5 \[Pi] x)/3] - 512 x^4 Sinh[(\[Pi] x)/3] Sinh[(5 \[Pi] x)/3] - 128 x^6 Sinh[(\[Pi] x)/3] Sinh[(5 \[Pi] x)/3] - 1024 Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] - 1024 x^2 Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] - 384 x^4 Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] - 64 x^6 Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] - 4 x^8 Sinh[\[Pi] x] Sinh[(5 \[Pi] x)/3] + 1024 Sinh[(5 \[Pi] x)/3]^2 + 1024 x^2 Sinh[(5 \[Pi] x)/3]^2 + 384 x^4 Sinh[(5 \[Pi] x)/3]^2 + 64 x^6 Sinh[(5 \[Pi] x)/3]^2 + 4 x^8 Sinh[(5 \[Pi] x)/3]^2 - 36864 Sinh[(\[Pi] x)/3] Sinh[(7 \[Pi] x)/3] + 15360 x^2 Sinh[(\[Pi] x)/3] Sinh[(7 \[Pi] x)/3] - 1792 x^4 Sinh[(\[Pi] x)/3] Sinh[(7 \[Pi] x)/3] + 64 x^6 Sinh[(\[Pi] x)/3] Sinh[(7 \[Pi] x)/3] + 4608 Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/3] + 1536 x^2 Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/3] - 64 x^4 Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/3] - 32 x^6 Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/3] + 2 x^8 Sinh[\[Pi] x] Sinh[(7 \[Pi] x)/3] - 9216 Sinh[(5 \[Pi] x)/3] Sinh[(7 \[Pi] x)/3] - 3072 x^2 Sinh[(5 \[Pi] x)/3] Sinh[(7 \[Pi] x)/3] + 128 x^4 Sinh[(5 \[Pi] x)/3] Sinh[(7 \[Pi] x)/3] + 64 x^6 Sinh[(5 \[Pi] x)/3] Sinh[(7 \[Pi] x)/3] - 4 x^8 Sinh[(5 \[Pi] x)/3] Sinh[(7 \[Pi] x)/3] + 20736 Sinh[(7 \[Pi] x)/3]^2 - 6912 x^2 Sinh[(7 \[Pi] x)/3]^2 + 864 x^4 Sinh[(7 \[Pi] x)/3]^2 - 48 x^6 Sinh[(7 \[Pi] x)/3]^2 + x^8 Sinh[(7 \[Pi] x)/3]^2)))/(2 (65536 Cosh[(2 \[Pi] x)/ 3]^2 Sinh[\[Pi] x]^2 - 32768 x^2 Cosh[(2 \[Pi] x)/3]^2 Sinh[\[Pi] x]^2 + 4096 x^4 Cosh[(2 \[Pi] x)/3]^2 Sinh[\[Pi] x]^2 + 65536 x^2 Sinh[(2 \[Pi] x)/3]^2 Sinh[\[Pi] x]^2)) *) Plot[eq[[2]], {x, 3.465728, 3.465729}, PlotPoints -> 100, WorkingPrecision -> 30] Plot[Im[eq[[2]]], {x, 3.465728, 3.465729}, PlotPoints -> 200, WorkingPrecision -> 60, PlotRange -> All]

eq /. x -> Rationalize[3.46572839, 0] // N[#, 20] & (* Cos[y] == 0.50035241364172394089 - 9.794261144042*10^-8 I *)
Edit
f does not reach zero as it should, in the imaginary range.
Plot[f[Rationalize[3.46572839, 0], y], {y, 1030/1000, 1060/1000}, PlotRange -> 10, PlotPoints -> 200] Maximize[{f[Rationalize[3.46572839, 0], y], 1030/1000 < y < 1060/1000}, y] // N[#, 10] & (* {-7.787746817*10^-6, {y -> 1.046790571}} *) ContourPlot[ f[x, y] == 0, {x, 34657283/10000000, 6931457/2000000}, {y, 1046786/1000000, 1046795/1000000}, PlotPoints -> 200, MaxRecursion -> 5, WorkingPrecision -> 30, FrameLabel -> Automatic]
