We can use the identity $e^{x+y} = e^x e^y$ to split the argment of Exp into a finite part and an infinite part. Here is some code to extract the finite and infinite parts of a series:
infinitePart[s:HoldPattern @ SeriesData[x_, x0_, __, inc_]] := Normal[ s + SeriesData[x, x0, {}, 0, 0, inc] ] finitePart[s_SeriesData] := s - infinitePart[s]
Now, making use of the identity:
ReplaceAll[ Series[Exp[Sqrt[1+x]/x], {x, 0, 3}], Exp[s_SeriesData] :> Exp[infinitePart[s]] Exp[finitePart[s] ] //TeXForm
$e^{\frac{1}{x}} \left(\sqrt{e}-\frac{\sqrt{e} x}{8}+\frac{9 \sqrt{e} x^2}{128}-\frac{145 \sqrt{e} x^3}{3072}+O\left(x^4\right)\right)$
we obtain the form I think you're looking for.
Exp[Sqrt[1 + x]/x] /. Exp[u_] :> Exp[Series[u, {x, 0, 3}]]$\endgroup$Exp[ Sqrt[1+x]/x ]. $\endgroup$x^3ofExp[Sqrt[1 + x]/x]that you would expect to see? $\endgroup$