You can do the Fourier transformation separately (because these are integrations). Using @BobHanlon suggestion:
dist = PDF[BinormalDistribution[{m1, m2}, {s1, s2}, \[Rho]], {x, y}] Plot3D[dist /. {m1 -> 0, m2 -> 1, s1 -> 1, s2 -> 2, \[Rho] -> 0.2}, {x, -5, 5}, {y, -5, 6}, PlotRange -> Full, MeshFunctions -> {#3 &}, MeshShading -> {White, Black, White, Black}]
I get for the 2D gaussian:

which when integrated over x and y with:
fourier = FourierTransform[FourierTransform[dist, x, \[Omega]1], y, \[Omega]2]
becomes for the real part (in phase):
Plot3D[Re[fourier] /. {m1 -> 0, m2 -> 1, s1 -> 1, s2 -> 2, \[Rho] -> 0.2}, {\[Omega]1, -5, 5}, {\[Omega]2, -5, 5}, PlotRange -> Full,MeshFunctions -> {#3 &}, MeshShading -> {White, Black, White, Black}]

and the out of phase complex component (see the change of sign):
Plot3D[Im[fourier] /. {m1 -> 0, m2 -> 1, s1 -> 1, s2 -> 2, \[Rho] -> 0.2}, {\[Omega]1, -5, 5}, {\[Omega]2, -5, 5}, PlotRange -> Full, MeshFunctions -> {#3 &}, MeshShading -> {White, Black, White, Black}]

Distribution. Also, avoid explicit subscripts, which only confuse matters, e.g., use μ1 and μ2, etc. $\endgroup$BinormalDistribution[{m1, m2}, {s1, s2}, r]and theFourierTransformof thePDFis just theCharacteristicFunctionof the distribution. $\endgroup$