Here is a static solution to the problem. It shows a mesh on the sphere that represents the normal lat-long coordinate system.
A function representing the equator.
equator[θ_] := {Cos[θ], Sin[θ], 0}
A function and a plot representing the inclined circle. Note that the inclination is accomplished by a rotation of the equator about the x-axis.
inclinedCircle[θ_, i_] := RotationTransform[i, {1, 0, 0}][equator[θ]]; circlePlot[i_] := ParametricPlot3D[ Evaluate[inclinedCircle[θ, i °]], {θ, 0, 2 π}, PlotStyle -> {Thickness[0.005]}]
A function and a plot representing the sphere.
sphere[u_, v_] := {Cos[u] Cos[v], Sin[u] Cos[v], Sin[v]}; spherePlot = ParametricPlot3D[ Evaluate[sphere[u, v]], {u, 0, 2 π}, {v, -π, π}];
A great circle inclined at 60°.
Show[{spherePlot, circlePlot[60]}, Axes -> False, Boxed -> False, PlotRange -> All, SphericalRegion -> True, ViewPoint -> {5, 0, 0}, ViewAngle -> 12 °]

Update 1
With a little modification to inclinedCircle and circlePlot to handle nodal point shift, it is easy to construct an interactive version. A rotation about the z-axis has been added to accomplish the nodal shift.
inclinedCircle[θ_, i_, offset_] := RotationTransform[offset, {0, 0, 1}] [RotationTransform[i, {1, 0, 0}][equator[θ]]]; circlePlot[i_, offset_: 0] := ParametricPlot3D[ Evaluate[inclinedCircle[θ, i °, offset °]], {θ, 0, 2 π}, PlotStyle -> {Thickness[0.005]}]
The parameter ι is the inclination and the parameter α is the equatorial ascending node.
Manipulate[ Show[{spherePlot, circlePlot[ι, α]}, Axes -> False, Boxed -> False, PlotRange -> All, SphericalRegion -> True, ViewPoint -> {5, 0, 0}, ViewAngle -> 12 °], {{ι, 60.}, 0., 90., 5., Appearance -> "Labeled"}, {{α, 0.}, 0., 355., 5., Appearance -> "Labeled"}, SaveDefinitions -> True]

Update 2
Rather than describing a great circle as the composition of rotations applied to the equator, those rotations can be used to derive a more conventional description, a parametic function built from elementary trigonometric functions. To do this, first apply inclinedCircle to some value-free symbols.
Clear[θ, ι, φ]; inclinedCircle[θ, ι, φ]
{Cos[θ] Cos[φ] - Cos[ι] Sin[θ] Sin[φ], Cos[ι] Cos[φ] Sin[θ] + Cos[θ] Sin[φ], Sin[θ] Sin[ι]}
From the output expression, write a function generator, inclinedCircle, that when given the inclination ι and the ascending node φ, returns a pure function producing the points on the desired great circle.
inclinedCircleF[ι_, φ_] = {Cos[#] Cos[φ] - Cos[ι] Sin[#] Sin[φ], Cos[ι] Cos[φ] Sin[#] + Cos[#] Sin[φ], Sin[#] Sin[ι]}&;
Next write a plotting function that will use the function generator rather than the rotations.
circlePlot2[ι_, φ_: 0.] := ParametricPlot3D[ inclinedCircleF[ι °, φ °][θ], {θ, 0., 2. π}, PlotStyle -> {Thickness[0.005]}]
Finally, substitute the new plotting function for the original one in the Manipulate.
Manipulate[ Show[{spherePlot, circlePlot2[ι, φ]}, Axes -> False, Boxed -> False, PlotRange -> All, SphericalRegion -> True, ViewPoint -> {5, 0, 0}, ViewAngle -> 12 °], {{ι, 60.}, 0., 90., 5., Appearance -> "Labeled"}, {{φ, 0.}, 0., 355., 5., Appearance -> "Labeled"}, SaveDefinitions -> True]
The output from evaluating this Manipulate expression is exactly the same as with the one using rotations, so I won't repeat it here.
Manipulate? The angle of inclination? The equatorial nodal points? $\endgroup$