I do not know how to handle the integro-term.
ieqn = 1 - 6.25*10^5*x[t] + 1.234*10^4*Integrate[x'[u]/Sqrt[t - u], {u, 0, t}] == 1.5924*x''[t]; ic = {x[0] == 0, x'[0] == 0}; sol = DSolve[{ieqn, ic}, x[t], t]; Plot[x[t] /. sol, {t, 0, 0.007}] I use "11.3.0 for Microsoft Windows (64-bit) (March 7, 2018)".
Copy-pasting the proposed code I receive only a slew of errors and no output (only the axes, but no graph).
Instead, writing:
f[u_?NumericQ] := x'[u]/Sqrt[t - u] ieqn = 1 - 6.25 10^5 x[t] + 1.2341 10^4 Integrate[f[u], {u, 0, t}] == 1.5924 x''[t]; ic = {x[0] == 0, x'[0] == 0}; xsol = NDSolveValue[{ieqn, ic}, x, {t, 0, 0.01}] // Quiet; Plot[xsol[t], {t, 0, 0.01}] // Quiet I get:
where the two Quiet still hide a series of errors.
x'[u] in a blackbox function, NDSolve won't be able to handle it corectly. $\endgroup$
DSolvereturns unevaluated. $\endgroup$