I have the following expression
FullSimplify[ Sqrt[1 + (-1 + a) (-1 + b) + 2 Sqrt[(-1 + a) (-1 + b)]] - Sqrt[ 2 + a (-1 + b) - 2 Sqrt[(-1 + a) (-1 + b)] - b]] Where $a\ge1$ and $b\ge1$. I know the answer should be $\sqrt{(1-a)(1-b)}$. However, $Mathematica$ doesn't solve this expression this way. How can one resolve this?


Reduce[{Sqrt[1 + (-1 + a) (-1 + b) + 2 Sqrt[(-1 + a) (-1 + b)]] - Sqrt[2 + a (-1 + b) - 2 Sqrt[(-1 + a) (-1 + b)] - b] == Sqrt[(a - 1) (b - 1)], a > 1, b > 1}]says this isTrueonly whena == (3 + b)/(-1 + b)$\endgroup$a -> 1.23, b -> 2.34. $\endgroup$