Using the following code in Mathematica:
{X, Y} = {x, y} /. DSolve[{x'[t] == -1/10 x[t] + 3/40 y[t], y'[t] == 1/10 x[t] - 1/5 y[t]}, {x, y}, t] // FullSimplify // First; {X[t], Y[t]} // Expand I get the following solution:
{1/4 E^(-t/4) C[1] + 3/4 E^(-t/20) C[1] - 3/8 E^(-t/4) C[2] + 3/8 E^(-t/20) C[2], -(1/2) E^(-t/4) C[1] + 1/2 E^(-t/20) C[1] + 3/4 E^(-t/4) C[2] + 1/4 E^(-t/20) C[2]} But if I do it by hand, I get: $ \begin{bmatrix}x\\y\end{bmatrix}=c_1 e^{-\dfrac{t}{4}} \begin{bmatrix}-1\\2\end{bmatrix}+c_2 e^{-\dfrac{t}{20}} \begin{bmatrix}3\\2\end{bmatrix} $
So, $ x(t)=-c_1e^{-\dfrac{t}{4}}+3c_2e^{-\dfrac{t}{20}} \text{ and } y(t)=2c_1e^{-\dfrac{t}{4}}+2c_2e^{-\dfrac{t}{20}} $
Why is there a discrepancy? How do I simplify Mathematica answer to mine?