0
$\begingroup$

I want to smoothen the following contour.

ContourPlot[ 10^b - (10^180/(10^m 10^23)^6)^(1/4)/Sqrt[ (((10^36)^(3/2))/( 10^m 10^23 Sqrt[ 100]))] == 0, {m, -3, 15}, {b, -25, -2}, ContourStyle -> {{Purple, Thickness[.01]}}] 

Is there a way to do so?

$\endgroup$

2 Answers 2

3
$\begingroup$

Try the option MaxRecursion

ContourPlot[ 10^b - (10^180/(10^m 10^23)^6)^(1/4)/Sqrt[(((10^36)^(3/2))/(10^m 10^23Sqrt[100]))] == 0, {m, -3, 15}, {b, -25, -2}, ContourStyle -> {{Purple, Thickness[.01]}}, MaxRecursion -> 5] 

enter image description here

$\endgroup$
4
$\begingroup$
10^b - (10^180/(10^m 10^23)^6)^(1/4)/Sqrt[(10^36)^(3/2)/( 10^m 10^23 Sqrt[100])] == 0 // FullSimplify 

get

10^b == (10^(-6 (-7 + m)))^(1/4)/Sqrt[10^(30 - m)] 

Solve m

m /. Solve[10^b == (10^(-6 (-7 + m)))^(1/4)/Sqrt[10^(30 - m)], {m}] 

get

{(-9 Log[10] - 2 Log[10^b])/(2 Log[10])} 

Plot it

Plot[(-9 Log[10] - 2 Log[10^b])/(2 Log[10]), {b, -25, -2}] 

enter image description here

This is m=f[b] , change to b=f[m]

Plot[InverseFunction[(-9 Log[10] - 2 Log[10^#])/(2 Log[10]) &][ m], {m, -3, 15}] 

enter image description here


And after simplify, we get

Plot[1/2 (-9 - 2 m), {m, -3, 15}] 

😂,such a simple expression.

$\endgroup$
1
  • 3
    $\begingroup$ Simplify[10^b - (10^180/(10^m 10^23)^6)^(1/4)/ Sqrt[(((10^36)^(3/2))/(10^m 10^23 Sqrt[100]))], Assumptions -> -25 <= b <= -2 && -3 <= m <= 15] $\endgroup$ Commented Apr 12, 2021 at 8:40

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.