I have this function for $n=\{1,2,3,4,5,6,7,8,9,10\}$. Is there any hope to significantly simplify this function (make it shortened) for general $n$? I use Simplify and FullSimplify, but it does not help much.
f[n_]:=11 + 2 E^((2 I n \[Pi])/11) + 5 E^((4 I n \[Pi])/11) + 8 E^((6 I n \[Pi])/11) + 14 E^((8 I n \[Pi])/11) + 20 E^((10 I n \[Pi])/11) + 30 E^((12 I n \[Pi])/11) + 22 E^((18 I n \[Pi])/11) + 17 E^((20 I n \[Pi])/11) + 6 E^((24 I n \[Pi])/11) - 2 E^((26 I n \[Pi])/11) - 8 E^((28 I n \[Pi])/11) - 20 E^((30 I n \[Pi])/11) - 31 E^((32 I n \[Pi])/11) - 60 E^((34 I n \[Pi])/11) - 31 E^((40 I n \[Pi])/11) - 20 E^((42 I n \[Pi])/11) - 2 E^((46 I n \[Pi])/11) + 6 E^((48 I n \[Pi])/11) + 10 E^((50 I n \[Pi])/11) + 17 E^((52 I n \[Pi])/11) + 22 E^((54 I n \[Pi])/11) + 30 E^((56 I n \[Pi])/11) + 20 E^((62 I n \[Pi])/11) + 14 E^((64 I n \[Pi])/11) + 5 E^((68 I n \[Pi])/11) + 2 E^((70 I n \[Pi])/11) + E^(( 72 I n \[Pi])/11) $$ f(n)=2 e^{\frac{2 i \pi n}{11}}+5 e^{\frac{4 i \pi n}{11}}+8 e^{\frac{6 i \pi n}{11}}+14 e^{\frac{8 i \pi n}{11}}+20 e^{\frac{10 i \pi n}{11}}+30 e^{\frac{12 i \pi n}{11}}+22 e^{\frac{18 i \pi n}{11}}+17 e^{\frac{20 i \pi n}{11}}+6 e^{\frac{24 i \pi n}{11}}-2 e^{\frac{26 i \pi n}{11}}-8 e^{\frac{28 i \pi n}{11}}-20 e^{\frac{30 i \pi n}{11}}-31 e^{\frac{32 i \pi n}{11}}-60 e^{\frac{34 i \pi n}{11}}-31 e^{\frac{40 i \pi n}{11}}-20 e^{\frac{42 i \pi n}{11}}-2 e^{\frac{46 i \pi n}{11}}+6 e^{\frac{48 i \pi n}{11}}+10 e^{\frac{50 i \pi n}{11}}+17 e^{\frac{52 i \pi n}{11}}+22 e^{\frac{54 i \pi n}{11}}+30 e^{\frac{56 i \pi n}{11}}+20 e^{\frac{62 i \pi n}{11}}+14 e^{\frac{64 i \pi n}{11}}+5 e^{\frac{68 i \pi n}{11}}+2 e^{\frac{70 i \pi n}{11}}+e^{\frac{72 i \pi n}{11}}+11 $$