Long Comment. Here, we investigate special cases.
Case 1. Let $B_r$ denote the disk of radius $r$ centered at the origin. Then for any integer $n \geq 0$ and with $f(x, y) = (x + iy)^n$,
$$\begin{align*} &\int_{B_1} \biggl( \frac{x}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial y} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial x} \biggr) \, \mathrm{d}x\mathrm{d}y \\ &= \int_{0}^{1} \int_{\partial B_r} \biggl( \frac{x}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial y} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial x} \biggr) \, \mathrm{d}s \mathrm{d}r \\ &= \int_{0}^{1} \int_{\partial B_r} \left( \frac{\partial f}{\partial y}, \frac{\partial f}{\partial x} \right) \cdot \mathbf{n} \, \mathrm{d}s \, \mathrm{d}r \\ &= \int_{0}^{1} \left( \int_{B_r} 2\frac{\partial^2 f}{\partial x \partial y} \, \mathrm{d}x\mathrm{d}y \right) \, \mathrm{d}r \\ &= \int_{0}^{1} \left( \int_{B_r} 2in(n-1)(x + iy)^{n-2} \, \mathrm{d}x\mathrm{d}y \right) \, \mathrm{d}r \\ &= \int_{0}^{1} \left( \int_{0}^{2\pi} \int_{0}^{r} 2in(n-1)\rho e^{i(n-2)\theta} \, \mathrm{d}\rho\mathrm{d}\theta \right) \, \mathrm{d}r \\ &= \frac{4\pi i}{3} \mathbf{1}[n = 2]. \end{align*}$$
Case 2. Now, define $f_0$ by
$$ f_0(x, y) = \frac{x^2y^4 + x^4y^2}{24} - \frac{x^6+y^6}{360}, $$
then $f_0$ satisfies $\Delta f_0 = x^2 y^2$ and
$$\begin{align*} \int_{B_1} \biggl( \frac{x}{\sqrt{x^2+y^2}} \frac{\partial f_0}{\partial y} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f_0}{\partial x} \biggr) \, \mathrm{d}x\mathrm{d}y &= \int_{B_1} \frac{x y (x^4 + 5x^2y^2 + y^4)}{15\sqrt{x^2+y^2}} \, \mathrm{d}x\mathrm{d}y \\ &= 0. \end{align*}$$
Case 3. Finally, if $f$ is a continuous function on $\overline{B}_1$ such that
$$ f(x, y) = f_0(x, y) + \sum_{n=0}^{\infty} [a_n \operatorname{Re}[(x+iy)^n] + b_n \operatorname{Im}[(x+iy)^n] ] $$
holds in an appropriate sense (such as locally uniform convergence), then the above computations show that
$$ \int_{B_1} \biggl( \frac{x}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial y} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial x} \biggr) \, \mathrm{d}x\mathrm{d}y = \frac{4\pi}{3} b_2. $$
However, I don't have enough expertise to determine whether any solution of $\Delta f = x^2 y^2$ on $B_1$ admits the above decomposition or not.