4
$\begingroup$

I'm trying to solve the following problem:

Let $B=\{(x,y):x^2+y^2\le 1\}$, $\Delta f=x^2y^2$, here $\Delta$ is the Laplacian. Find $$\iint_B{\left( \frac{x}{\sqrt{x^2+y^2}}\frac{\partial f}{\partial y}+\frac{y}{\sqrt{x^2+y^2}}\frac{\partial f}{\partial x} \right) \mathrm{d}x\mathrm{d}y}.$$

I tried to use Green's formula. Therefore, I define $\mathbf{F}=\left(\frac{y}{\sqrt{x^2+y^2}},\frac{x}{\sqrt{x^2+y^2}}\right)$, hence the integral becomes $\iint_B\mathbf{F}\cdot\nabla f\mathrm{d}x\mathrm{d}y$. If we can write $\mathbf{F}=\nabla\phi$, then by $\phi\Delta f=\nabla(\phi\nabla f)-\nabla\phi\nabla f$, we have $$ \iint_B\mathbf{F}\cdot\nabla f\mathrm{d}x\mathrm{d}y=\iint_B\phi\Delta f\mathrm{d}x\mathrm{d}y+\oint_{\partial D}\phi\nabla f\cdot\mathbf{n}\mathrm{d}s. $$ However, the problem is $\mathrm{curl}\mathbf{F}\ne 0$, hence such $\phi$ cannot exist.

The problem is also weird for not assuming any boundary conditions of $f$. How can I solve this problem?

$\endgroup$
3
  • $\begingroup$ Are you sure one of those terms isn’t a negative? $\endgroup$ Commented yesterday
  • $\begingroup$ I'm sure the problem is presented as what I wrote, but I doubt the problem is acutually flawed. $\endgroup$ Commented yesterday
  • $\begingroup$ Your citing of Green's formula is not correct. It should mirror the integration by parts formula so it should be $(\text{original volume integral})=(\text{boundary integral})-(\text{volume integral})$ $\endgroup$ Commented yesterday

1 Answer 1

4
$\begingroup$

Long Comment. Here, we investigate special cases.


Case 1. Let $B_r$ denote the disk of radius $r$ centered at the origin. Then for any integer $n \geq 0$ and with $f(x, y) = (x + iy)^n$,

$$\begin{align*} &\int_{B_1} \biggl( \frac{x}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial y} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial x} \biggr) \, \mathrm{d}x\mathrm{d}y \\ &= \int_{0}^{1} \int_{\partial B_r} \biggl( \frac{x}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial y} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial x} \biggr) \, \mathrm{d}s \mathrm{d}r \\ &= \int_{0}^{1} \int_{\partial B_r} \left( \frac{\partial f}{\partial y}, \frac{\partial f}{\partial x} \right) \cdot \mathbf{n} \, \mathrm{d}s \, \mathrm{d}r \\ &= \int_{0}^{1} \left( \int_{B_r} 2\frac{\partial^2 f}{\partial x \partial y} \, \mathrm{d}x\mathrm{d}y \right) \, \mathrm{d}r \\ &= \int_{0}^{1} \left( \int_{B_r} 2in(n-1)(x + iy)^{n-2} \, \mathrm{d}x\mathrm{d}y \right) \, \mathrm{d}r \\ &= \int_{0}^{1} \left( \int_{0}^{2\pi} \int_{0}^{r} 2in(n-1)\rho e^{i(n-2)\theta} \, \mathrm{d}\rho\mathrm{d}\theta \right) \, \mathrm{d}r \\ &= \frac{4\pi i}{3} \mathbf{1}[n = 2]. \end{align*}$$

Case 2. Now, define $f_0$ by

$$ f_0(x, y) = \frac{x^2y^4 + x^4y^2}{24} - \frac{x^6+y^6}{360}, $$

then $f_0$ satisfies $\Delta f_0 = x^2 y^2$ and

$$\begin{align*} \int_{B_1} \biggl( \frac{x}{\sqrt{x^2+y^2}} \frac{\partial f_0}{\partial y} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f_0}{\partial x} \biggr) \, \mathrm{d}x\mathrm{d}y &= \int_{B_1} \frac{x y (x^4 + 5x^2y^2 + y^4)}{15\sqrt{x^2+y^2}} \, \mathrm{d}x\mathrm{d}y \\ &= 0. \end{align*}$$

Case 3. Finally, if $f$ is a continuous function on $\overline{B}_1$ such that

$$ f(x, y) = f_0(x, y) + \sum_{n=0}^{\infty} [a_n \operatorname{Re}[(x+iy)^n] + b_n \operatorname{Im}[(x+iy)^n] ] $$

holds in an appropriate sense (such as locally uniform convergence), then the above computations show that

$$ \int_{B_1} \biggl( \frac{x}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial y} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial x} \biggr) \, \mathrm{d}x\mathrm{d}y = \frac{4\pi}{3} b_2. $$

However, I don't have enough expertise to determine whether any solution of $\Delta f = x^2 y^2$ on $B_1$ admits the above decomposition or not.

$\endgroup$
3
  • $\begingroup$ The integral in my problem is $\frac{x}{r}f_y+\frac{y}{r}f_x$. Though your integral is indeed a more natural one, I have double-checked that I copied the problem correct. $\endgroup$ Commented yesterday
  • $\begingroup$ @MathLearner, Oops, sorry that I misread your problem! I'll check if I can fix it. $\endgroup$ Commented yesterday
  • $\begingroup$ @MathLearner I was not able to answer the question in full generality, but it seems that the value of the integral does depend on $f$. $\endgroup$ Commented yesterday

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.