Let be given the polyhedron ABCD with $AB = 4 \sqrt{3}$, $AC=1$, $BC=\sqrt{41}$, $AD=\sqrt{17}$, $CD=4$, and $BD=5$. I am trying to find coordinates of two vertices $B$ and $D$ knowing $A(0,0,0)$ and $C(1,0,0)$. I tried
Clear[a, b, c]; a = {0, 0}; c = {1, 0}; b = {x, y}; Solve[{EuclideanDistance[a, b] == 4 Sqrt[3], EuclideanDistance[c, b] == Sqrt[41]}, {x, y}] I got
{{x -> 4, y -> -4 Sqrt[2]}, {x -> 4, y -> 4 Sqrt[2]}}
And then, I solved
Clear[a, b, c] a = {0, 0, 0}; c = {1, 0, 0}; b = {4, 4 Sqrt[2], 0}; d = {x, y, z}; d /. Solve[{EuclideanDistance[a, d] == Sqrt[17], EuclideanDistance[b, d] == 5, EuclideanDistance[c, d] == 4}, {x, y, z}, Reals] {{1, 2 Sqrt[2], -2 Sqrt[2]}, {1, 2 Sqrt[2], 2 Sqrt[2]}}
How can I get coordinates of two points B and D with another way?


