here is the code I am using - having issues getting started in FEA for this simple beam model. The problem is simple - I have looked at posted examples of MMA FEA, but they are all 2D and 3D problems. If I can get this simple 1D model made and play with it, I know I can get a better understanding of the general approach for MMA FEA.
(*Define parameters*) Ls = 10; (*Length of the beam in meters*) Es = 210*10^9; (*Young's modulus in Pascals*) Is = 1*10^-6; (*Moment of inertia in m^4*) qs = 1000; (*Uniform load in N/m applied over half the beam*) (*Load function definition*) loadFunction[x_] := If[x <= Ls/2, qs, 0]; (*Beam equation setup using FEM*) Needs["NDSolve`FEM`"]; (*ToElementMesh["Coordinates"\[Rule]{{0},{Ls}},"MeshElements"\[Rule]{\ LineElement[{{1,2}}]}] beamDomain=ToElementMesh[LineElement[{0,0},{0,Ls}]];*) beamDomain = ToElementMesh[Line[{0, 0}, {0, Ls}]]; (*Check if mesh is created properly*) MeshRegion[beamDomain] (*Boundary conditions for a simply supported beam*) boundaryConditions = {w[0] == 0, w[Ls] == 0, Derivative[2][w][0] == 0, Derivative[2][w][Ls] == 0}; (*Beam equation*) beamPDE = Es*Is*D[w[x], {x, 4}] + loadFunction[x] == 0; (*Solve the beam equation using NDSolve with FEM*) solution = NDSolveValue[{beamPDE, boundaryConditions}, w, {x, 0, Ls}, Method -> {"FiniteElement"}]; (*Plot the deflection diagram*) Plot[solution[x], {x, 0, Ls}, PlotLabel -> "Deflection Diagram", AxesLabel -> {"x (m)", "w(x) (m)"}] (*Calculate shear force V(x)=-EI*d^3w/dx^3*) shearForce = -Es*Is*D[solution[x], {x, 3}]; (*Plot the shear force diagram*) Plot[shearForce, {x, 0, Ls}, PlotLabel -> "Shear Force Diagram", AxesLabel -> {"x (m)", "V(x) (N)"}] (*Calculate bending moment M(x)=-EI*d^2w/dx^2*) bendingMoment = -Es*Is*D[solution[x], {x, 2}]; (*Plot the bending moment diagram*) Plot[bendingMoment, {x, 0, Ls}, PlotLabel -> "Bending Moment Diagram", AxesLabel -> {"x (m)", "M(x) (N*m)"}] 
solution = NDSolveValue[{beamPDE, boundaryConditions}, w, {x, 0, Ls}]and then the plots work fine. $\endgroup$beamDomain = ToElementMesh [ImplicitRegion[0 <= x <= Ls, x]]. You need to change your pde-system too, FEM only solves second order pde's in Mathematica $\endgroup$