I am trying to integrate $$\int_0^c \exp\left(-ax+\frac bx\right)~dx$$.
I proceed manually in this way (according to https://math.stackexchange.com/questions/2978887/primitive-of-exp-a-times-x-frac-bx?noredirect=1&lq=1):
$=\int_0^c \exp(-ax-(-\frac bx)~)~dx$
$=c\int_1^\infty\dfrac{exp({-\frac{(-b)x}{c}-\frac{ac}{x}})}{x^2}~dx$
$=cK_1\left(\dfrac{(-b)}{c},ac\right)$ (according to https://core.ac.uk/download/pdf/81935301.pdf)
$K_1(x,y)$ is a incomplete BesselK function.
I am unable to verify it on Mathematica.
