Consider the following function:
e[w_] := 1/(2 w (w + a i W) (1 + a i w W)) (2 w^2 + 2 a i w^3 W + a^2 i^2 (-1 + 2 w^2) W^2 - \[Sqrt](a i W (4 (i + lambda) w^3 + 4 a i w^2 (1 + 2 i + 2 lambda + (i + lambda) w^2) W + 4 a^2 i^2 w (1 + i + lambda + 2 (i + lambda) w^2) W^2 + a^3 i^3 (1 + 4 (i + lambda) w^2) W^3))) I'm trying to do two things. First, I would like to verify whether $e$ is an increasing and concave function of $w$ under the assumption of $a \in [0,1]$, $i \in [0,1]$, $\lambda \in [0,1]$, $w>0$, $W>0$. That is, $\frac{\partial e}{\partial w}>0$, $\frac{\partial^2 e}{\partial w^2}<0$.
Here is my code for this:
Clear["Global`*"]; e[w_]:= 1/(2 w (w + a i W) (1 + a i w W)) (2 w^2 + 2 a i w^3 W + a^2 i^2 (-1 + 2 w^2) W^2 - \[Sqrt](a i W (4 (i + lambda) w^3 + 4 a i w^2 (1 + 2 i + 2 lambda + (i + lambda) w^2) W + 4 a^2 i^2 w (1 + i + lambda + 2 (i + lambda) w^2) W^2 + a^3 i^3 (1 + 4 (i + lambda) w^2) W^3))); Assuming[a > 0 && a < 1 && i > 0 && i < 1 && lambda > 0 && lambda < 1 && w > 0 && W > 0, FullSimplify@Reduce[e'[w] > 0]] Assuming[a > 0 && a < 1 && i > 0 && i < 1 && lambda > 0 && lambda < 1 && w > 0 && W > 0, FullSimplify@Reduce[e''[w] < 0]] Second, I would like to find $w$ that solves $$\frac{\partial e}{\partial w}=\frac{e}{w}$$ Here is my code for this:
Assuming[a > 0 && a < 1 && i > 0 && i < 1 && lambda > 0 && lambda < 1 && w > 0 && W > 0, FullSimplify@Solve[e'[w] == e[w]/w, w]] These codes are running forever. Any help please?




e[w]only depends on two (not four!) parametersa i Wandi+lambda$\endgroup$