I need to find one non-negative solution to the system of linear equations
y[9]==0&&y[8]==1-2 y[12]&&y[7]==3-2 y[11]-3 y[14]&&y[6]==-2 y[10]-3 y[13]-4 y[15]&&y[5]==0&&y[4]==1&&y[3]==1+y[12]&&y[2]==y[11]+2 y[14]&&y[1]==1+y[10]+2 y[13]+3 y[15]&&x[15]==0&&x[14]==1+y[15]&&x[13]==-y[15]&&x[12]==y[14]-y[15]&&x[11]==2+y[13]-y[14]+3 y[15]&&x[10]==-y[13]-2 y[15]&&x[9]==y[12]-y[14]&&x[8]==y[11]-y[12]-y[13]+3 y[14]-2 y[15]&&x[7]==3+y[10]-y[11]+3 y[13]-2 y[14]+5 y[15]&&x[6]==-y[10]-2 y[13]-3 y[15]&&x[5]==-y[12]&&x[4]==1-y[11]+y[12]-2 y[14]&&x[3]==-1-y[10]+y[11]-2 y[13]+2 y[14]-3 y[15]&&x[2]==1+y[10]+2 y[13]+3 y[15]&&x[1]==0 I tried to use FindInstance to solve it, but it is too complicated.
I wonder whether there are other more efficient methods that utilize the linearity.
x[i]s andy[i]s need to be non-negative. @CraigCarter $\endgroup${x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], y[1], y[2], y[3], y[4], y[5], y[6], y[7], y[8], y[9], y[10], y[11], y[12], y[13], y[14], y[15]} >= 0. $\endgroup$