I'd like to solve approximately the following system of equations for $a_1$, $a_2$, $\alpha_1$ and $\alpha_2$ all real and nonzero:
$a_1(1+4\alpha_2)^3+8a_2(1+4\alpha_1)^2+\frac{\sqrt{\pi}}{64}(1+4\alpha_1)^2(1+4\alpha_2)^3=0$
$a_1(1+4\alpha_2)^5+16a_2(1+4\alpha_1)^4-\frac{11\sqrt{\pi}}{512}(1+4\alpha_1)^4(1+4\alpha_2)^5=0$
$a_1(1+4\alpha_2)^7+24a_2(1+4\alpha_1)^6-\frac{65\sqrt{\pi}}{8192}(1+4\alpha_1)^6(1+4\alpha_2)^7=0$
$a_1(1+4\alpha_2)^9+32a_2(1+4\alpha_1)^8-\frac{291\sqrt{\pi}}{65536}(1+4\alpha_1)^8(1+4\alpha_2)^9=0$
where I know that some approximate solutions are
$a_1 = 117.429,\ \ a_2 = -755.468,\ \ \alpha_1 = 1.3177,\ \ \alpha_2 = 2.9026$
I'd like to improve on these or at least confirm them. Plotting the equations in one parameter while keeping the other three as above I see that there are indeed roots there, e.g:
a2 = -755.468; alpha1 = 1.3177; alpha2 = 2.9026; and:
Plot[a1/(1 + 4 alpha1)^2 + (8 a2)/(1 + 4 alpha2)^3 + Sqrt[Pi]/64, {a1, 110, 120}, PlotRange -> {{110, 120}, {-0.1, 0.1}}] I've tried using FindRoot with different parameters (accuracies, iterations, methods), but I end up with Failed to converge to the requested accuracy or precision within # iterations, and results which are completely different. One example:
FindRoot[{a1 (1 + 4alpha2)^3 + 8 a2 (1 + 4alpha1)^2 + Sqrt[Pi] (1 +4 alpha1)^2 (1 +4 alpha2)^3/64 , a1 (1 +4 alpha2)^5 + 16 a2 (1 +4 alpha1)^4 - 11 Sqrt[Pi] (1 + 4alpha1)^4 (1 + 4alpha2)^5/512 , a1 (1 +4 alpha2)^7 + 24 a2 (1 + 4alpha1)^6 - 65 Sqrt[Pi] (1 +4 alpha1)^6 (1 + 4alpha2)^7/8192 , a1 (1 +4 alpha2)^9 + 32 a2 (1 + 4alpha1)^8 - 291 Sqrt[Pi] (1 + 4alpha1)^8 (1 + 4alpha2)^9/65536}, {{a1, 110, 120}, {a2, -760, -750}, {alpha1, 1.3, 1.4}, {alpha2, 2.9, 3}}, MaxIterations -> 100000, WorkingPrecision -> 50] Gives the error above and
$a_1 \rightarrow 0.631165832,$
$a_2 \rightarrow -70.5406787,$
$\alpha_1 \rightarrow 0.30522891, $
$\alpha_2 \rightarrow 3.7582495135$.
Any ideas how I can improve on this?
