Nikie's answer solved my problem, but his answer was in Mathematica. So I thought I should give its OpenCV adaptation here. But after implementing I could see that OpenCV code is much bigger than nikie's mathematica code. And also, I couldn't find interpolation method done by nikie in OpenCV ( although it can be done using scipy, i will tell it when time comes.)
1. Image PreProcessing ( closing operation )
import cv2 import numpy as np img = cv2.imread('dave.jpg') img = cv2.GaussianBlur(img,(5,5),0) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) mask = np.zeros((gray.shape),np.uint8) kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11)) close = cv2.morphologyEx(gray,cv2.MORPH_CLOSE,kernel1) div = np.float32(gray)/(close) res = np.uint8(cv2.normalize(div,div,0,255,cv2.NORM_MINMAX)) res2 = cv2.cvtColor(res,cv2.COLOR_GRAY2BGR)
Result :

2. Finding Sudoku Square and Creating Mask Image
thresh = cv2.adaptiveThreshold(res,255,0,1,19,2) contour,hier = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) max_area = 0 best_cnt = None for cnt in contour: area = cv2.contourArea(cnt) if area > 1000: if area > max_area: max_area = area best_cnt = cnt cv2.drawContours(mask,[best_cnt],0,255,-1) cv2.drawContours(mask,[best_cnt],0,0,2) res = cv2.bitwise_and(res,mask)
Result :

3. Finding Vertical lines
kernelx = cv2.getStructuringElement(cv2.MORPH_RECT,(2,10)) dx = cv2.Sobel(res,cv2.CV_16S,1,0) dx = cv2.convertScaleAbs(dx) cv2.normalize(dx,dx,0,255,cv2.NORM_MINMAX) ret,close = cv2.threshold(dx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernelx,iterations = 1) contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) for cnt in contour: x,y,w,h = cv2.boundingRect(cnt) if h/w > 5: cv2.drawContours(close,[cnt],0,255,-1) else: cv2.drawContours(close,[cnt],0,0,-1) close = cv2.morphologyEx(close,cv2.MORPH_CLOSE,None,iterations = 2) closex = close.copy()
Result :

4. Finding Horizontal Lines
kernely = cv2.getStructuringElement(cv2.MORPH_RECT,(10,2)) dy = cv2.Sobel(res,cv2.CV_16S,0,2) dy = cv2.convertScaleAbs(dy) cv2.normalize(dy,dy,0,255,cv2.NORM_MINMAX) ret,close = cv2.threshold(dy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernely) contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) for cnt in contour: x,y,w,h = cv2.boundingRect(cnt) if w/h > 5: cv2.drawContours(close,[cnt],0,255,-1) else: cv2.drawContours(close,[cnt],0,0,-1) close = cv2.morphologyEx(close,cv2.MORPH_DILATE,None,iterations = 2) closey = close.copy()
Result :

Of course, this one is not so good.
5. Finding Grid Points
res = cv2.bitwise_and(closex,closey)
Result :

6. Correcting the defects
Here, nikie does some kind of interpolation, about which I don't have much knowledge. And i couldn't find any corresponding function for this OpenCV. (may be it is there, i don't know).
Check out this SOF which explains how to do this using SciPy, which I don't want to use : Image transformation in OpenCV
So, here I took 4 corners of each sub-square and applied warp Perspective to each.
For that, first we find the centroids.
contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) centroids = [] for cnt in contour: mom = cv2.moments(cnt) (x,y) = int(mom['m10']/mom['m00']), int(mom['m01']/mom['m00']) cv2.circle(img,(x,y),4,(0,255,0),-1) centroids.append((x,y))
But resulting centroids won't be sorted. Check out below image to see their order:

So we sort them from left to right, top to bottom.
centroids = np.array(centroids,dtype = np.float32) c = centroids.reshape((100,2)) c2 = c[np.argsort(c[:,1])] b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])] for i in xrange(10)]) bm = b.reshape((10,10,2))
Now see below their order :

Finally we apply the transformation and create a new image of size 450x450.
output = np.zeros((450,450,3),np.uint8) for i,j in enumerate(b): ri = i/10 ci = i%10 if ci != 9 and ri!=9: src = bm[ri:ri+2, ci:ci+2 , :].reshape((4,2)) dst = np.array( [ [ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1] ], np.float32) retval = cv2.getPerspectiveTransform(src,dst) warp = cv2.warpPerspective(res2,retval,(450,450)) output[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1] = warp[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1].copy()
Result :

The result is almost same as nikie's, but code length is large. May be, better methods are available out there, but until then, this works OK.
Regards ARK.