have you tried flatten? From matplotlib.cbook.flatten(seq, scalarp=) ?
l=[[1,2,3],[4,5,6], [7], [8,9]]*33 run("list(flatten(l))") 3732 function calls (3303 primitive calls) in 0.007 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.007 0.007 <string>:1(<module>) 429 0.001 0.000 0.001 0.000 cbook.py:475(iterable) 429 0.002 0.000 0.003 0.000 cbook.py:484(is_string_like) 429 0.002 0.000 0.006 0.000 cbook.py:565(is_scalar_or_string) 727/298 0.001 0.000 0.007 0.000 cbook.py:605(flatten) 429 0.000 0.000 0.001 0.000 core.py:5641(isMaskedArray) 858 0.001 0.000 0.001 0.000 {isinstance} 429 0.000 0.000 0.000 0.000 {iter} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} l=[[1,2,3],[4,5,6], [7], [8,9]]*66 run("list(flatten(l))") 7461 function calls (6603 primitive calls) in 0.007 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.007 0.007 <string>:1(<module>) 858 0.001 0.000 0.001 0.000 cbook.py:475(iterable) 858 0.002 0.000 0.003 0.000 cbook.py:484(is_string_like) 858 0.002 0.000 0.006 0.000 cbook.py:565(is_scalar_or_string) 1453/595 0.001 0.000 0.007 0.000 cbook.py:605(flatten) 858 0.000 0.000 0.001 0.000 core.py:5641(isMaskedArray) 1716 0.001 0.000 0.001 0.000 {isinstance} 858 0.000 0.000 0.000 0.000 {iter} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} l=[[1,2,3],[4,5,6], [7], [8,9]]*99 run("list(flatten(l))") 11190 function calls (9903 primitive calls) in 0.010 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.010 0.010 <string>:1(<module>) 1287 0.002 0.000 0.002 0.000 cbook.py:475(iterable) 1287 0.003 0.000 0.004 0.000 cbook.py:484(is_string_like) 1287 0.002 0.000 0.009 0.000 cbook.py:565(is_scalar_or_string) 2179/892 0.001 0.000 0.010 0.000 cbook.py:605(flatten) 1287 0.001 0.000 0.001 0.000 core.py:5641(isMaskedArray) 2574 0.001 0.000 0.001 0.000 {isinstance} 1287 0.000 0.000 0.000 0.000 {iter} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} l=[[1,2,3],[4,5,6], [7], [8,9]]*132 run("list(flatten(l))") 14919 function calls (13203 primitive calls) in 0.013 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.013 0.013 <string>:1(<module>) 1716 0.002 0.000 0.002 0.000 cbook.py:475(iterable) 1716 0.004 0.000 0.006 0.000 cbook.py:484(is_string_like) 1716 0.003 0.000 0.011 0.000 cbook.py:565(is_scalar_or_string) 2905/1189 0.002 0.000 0.013 0.000 cbook.py:605(flatten) 1716 0.001 0.000 0.001 0.000 core.py:5641(isMaskedArray) 3432 0.001 0.000 0.001 0.000 {isinstance} 1716 0.001 0.000 0.001 0.000 {iter} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'
UPDATE Which gave me another idea:
l=[[1,2,3],[4,5,6], [7], [8,9]]*33 run("flattenlist(l)") 564 function calls (432 primitive calls) in 0.000 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 133/1 0.000 0.000 0.000 0.000 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.000 0.000 0.000 0.000 <string>:1(<module>) 429 0.000 0.000 0.000 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} l=[[1,2,3],[4,5,6], [7], [8,9]]*66 run("flattenlist(l)") 1125 function calls (861 primitive calls) in 0.001 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 265/1 0.001 0.000 0.001 0.001 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.000 0.000 0.001 0.001 <string>:1(<module>) 858 0.000 0.000 0.000 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} l=[[1,2,3],[4,5,6], [7], [8,9]]*99 run("flattenlist(l)") 1686 function calls (1290 primitive calls) in 0.001 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 397/1 0.001 0.000 0.001 0.001 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.000 0.000 0.001 0.001 <string>:1(<module>) 1287 0.000 0.000 0.000 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} l=[[1,2,3],[4,5,6], [7], [8,9]]*132 run("flattenlist(l)") 2247 function calls (1719 primitive calls) in 0.002 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 529/1 0.001 0.000 0.002 0.002 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.000 0.000 0.002 0.002 <string>:1(<module>) 1716 0.001 0.000 0.001 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} l=[[1,2,3],[4,5,6], [7], [8,9]]*1320 run("flattenlist(l)") 22443 function calls (17163 primitive calls) in 0.016 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 5281/1 0.011 0.000 0.016 0.016 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.000 0.000 0.016 0.016 <string>:1(<module>) 17160 0.005 0.000 0.005 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
So to test how effective it is when recursive gets deeper: How much deeper?
l=[[1,2,3],[4,5,6], [7], [8,9]]*1320 new=[l]*33 run("flattenlist(new)") 740589 function calls (566316 primitive calls) in 0.418 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 174274/1 0.281 0.000 0.417 0.417 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.001 0.001 0.418 0.418 <string>:1(<module>) 566313 0.136 0.000 0.136 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} new=[l]*66 run("flattenlist(new)") 1481175 function calls (1132629 primitive calls) in 0.809 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 348547/1 0.542 0.000 0.807 0.807 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.002 0.002 0.809 0.809 <string>:1(<module>) 1132626 0.266 0.000 0.266 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} new=[l]*99 run("flattenlist(new)") 2221761 function calls (1698942 primitive calls) in 1.211 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 522820/1 0.815 0.000 1.208 1.208 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.002 0.002 1.211 1.211 <string>:1(<module>) 1698939 0.393 0.000 0.393 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} new=[l]*132 run("flattenlist(new)") 2962347 function calls (2265255 primitive calls) in 1.630 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 697093/1 1.091 0.000 1.627 1.627 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.003 0.003 1.630 1.630 <string>:1(<module>) 2265252 0.536 0.000 0.536 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} new=[l]*1320 run("flattenlist(new)") 29623443 function calls (22652523 primitive calls) in 16.103 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 6970921/1 10.842 0.000 16.069 16.069 <ipython-input-55-39b139bad497>:4(flattenlist) 1 0.034 0.034 16.103 16.103 <string>:1(<module>) 22652520 5.227 0.000 5.227 0.000 {isinstance} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
I will bet "flattenlist" I am going to use this rather than matploblib for a long long time unless I want a yield generator and fast result as "flatten" uses in matploblib.cbook
This, is fast.
:
typ=(list,tuple) def flattenlist(d): thelist = [] for x in d: if not isinstance(x,typ): thelist += [x] else: thelist += flattenlist(x) return thelist