I'm trying to parse a list of nested lists to a pandas dataframe.
This is a sample of the list:
>>>result[1] { "account_currency": "BRL", "account_id": "1600343406676896", "account_name": "aaa", "buying_type": "AUCTION", "campaign_id": "aaa", "campaign_name": "aaaL", "canvas_avg_view_percent": "0", "canvas_avg_view_time": "0", "clicks": "1", "cost_per_total_action": "8.15", "cpm": "60.820896", "cpp": "61.278195", "date_start": "2017-10-08", "date_stop": "2017-10-15", "device_platform": "desktop", "frequency": "1.007519", "impression_device": "desktop", "impressions": "134", "inline_link_clicks": "1", "inline_post_engagement": "1", "objective": "CONVERSIONS", "outbound_clicks": [ { "action_type": "outbound_click", "value": "1" } ], "platform_position": "feed", "publisher_platform": "facebook", "reach": "133", "social_clicks": "1", "social_impressions": "91", "social_reach": "90", "spend": "8.15", "total_action_value": "0", "total_actions": "1", "total_unique_actions": "1", "unique_actions": [ { "action_type": "landing_page_view", "value": "1" }, { "action_type": "link_click", "value": "1" }, { "action_type": "page_engagement", "value": "1" }, { "action_type": "post_engagement", "value": "1" } ], "unique_clicks": "1", "unique_inline_link_clicks": "1", "unique_outbound_clicks": [ { "action_type": "outbound_click", "value": "1" } ], "unique_social_clicks": "1" } When I transform it to a pandas dataframe, I get:
>>>df = pd.DataFrame(result) >>>df .... unique_actions \ NaN [{u'value': u'1', u'action_type': u'landing_pa... NaN [{u'value': u'2', u'action_type': u'landing_pa... [{u'value': u'4', u'action_type': u'landing_pa... NaN Unique actions and someother filter are not normalized.
How can I normalize it to the same granularity?