I tried with How do I check if keras is using gpu version of tensorflow? answer. But I recognized only keras doesn't see GPU.
I re-installed whole requirements including tensorflow-gpu, keras module, and even CUDA.
I'm using Jupyter remote-ipython.
followed list is my installed module version
... keras 2.2.4 keras-applications 1.0.8 keras-preprocessing 1.1.0 ... tensorflow-gpu 1.14.0 ... nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2018 NVIDIA Corporation Built on Sat_Aug_25_21:08:01_CDT_2018 Cuda compilation tools, release 10.0, V10.0.130 I checked with following:
print(device_lib.list_local_devices()) print() from keras import backend print(backend.tensorflow_backend._get_available_gpus()) print() from torch import cuda print(cuda.is_available()) print(cuda.device_count()) print(cuda.get_device_name(cuda.current_device())) print() and result:
device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 15355337614284368930 , name: "/device:XLA_CPU:0" device_type: "XLA_CPU" memory_limit: 17179869184 locality { } incarnation: 5758691101165968939 physical_device_desc: "device: XLA_CPU device" , name: "/device:XLA_GPU:0" device_type: "XLA_GPU" memory_limit: 17179869184 locality { } incarnation: 17050701241022830982 physical_device_desc: "device: XLA_GPU device" , name: "/device:XLA_GPU:1" device_type: "XLA_GPU" memory_limit: 17179869184 locality { } incarnation: 15949544090620437264 physical_device_desc: "device: XLA_GPU device" ] [] True 2 GeForce GTX 1080 Ti ==========ADDED==========
Also I followed How to tell if tensorflow is using gpu acceleration from inside python shell? answer at terminal. I tried:
with tf.device('/gpu:0'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) with tf.Session() as sess: print (sess.run(c)) and result:
2019-08-08 16:16:57.060679: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1 2019-08-08 16:16:57.075040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.6705 pciBusID: 0000:05:00.0 2019-08-08 16:16:57.076003: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 1 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.6705 pciBusID: 0000:0a:00.0 2019-08-08 16:16:57.076256: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0 2019-08-08 16:16:57.078074: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0 2019-08-08 16:16:57.080007: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0 2019-08-08 16:16:57.080436: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0 2019-08-08 16:16:57.083506: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0 2019-08-08 16:16:57.085629: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0 2019-08-08 16:16:57.086483: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcudnn.so.7'; dlerror: libcudnn.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:/tink/dlgks224/conda/lib: 2019-08-08 16:16:57.086537: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1663] Cannot dlopen some GPU libraries. Skipping registering GPU devices... 2019-08-08 16:16:57.087195: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2019-08-08 16:16:57.117070: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2198685000 Hz 2019-08-08 16:16:57.119097: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55eab648cdc0 executing computations on platform Host. Devices: 2019-08-08 16:16:57.119231: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined> 2019-08-08 16:16:57.119383: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-08-08 16:16:57.119397: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 2019-08-08 16:16:57.483390: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55eab653adf0 executing computations on platform CUDA. Devices: 2019-08-08 16:16:57.483443: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce GTX 1080 Ti, Compute Capability 6.1 2019-08-08 16:16:57.483454: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (1): GeForce GTX 1080 Ti, Compute Capability 6.1 Traceback (most recent call last): File "/tink/dlgks224/conda/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1356, in _do_call return fn(*args) File "/tink/dlgks224/conda/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1339, in _run_fn self._extend_graph() File "/tink/dlgks224/conda/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1374, in _extend_graph tf_session.ExtendSession(self._session) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation MatMul: {{node MatMul}}was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:XLA_CPU:0, /job:localhost/replica:0/task:0/device:XLA_GPU:0, /job:localhost/replica:0/task:0/device:XLA_GPU:1 ]. Make sure the device specification refers to a valid device. [[MatMul]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 2, in <module> File "/tink/dlgks224/conda/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 950, in run run_metadata_ptr) File "/tink/dlgks224/conda/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1173, in _run feed_dict_tensor, options, run_metadata) File "/tink/dlgks224/conda/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1350, in _do_run run_metadata) File "/tink/dlgks224/conda/lib/python3.7/site-packages/tensorflow/python/client/session.py", line 1370, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation MatMul: node MatMul (defined at <stdin>:4) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:XLA_CPU:0, /job:localhost/replica:0/task:0/device:XLA_GPU:0, /job:localhost/replica:0/task:0/device:XLA_GPU:1 ]. Make sure the device specification refers to a valid device. [[MatMul]] Errors may have originated from an input operation. Input Source operations connected to node MatMul: a (defined at <stdin>:2) b (defined at <stdin>:3)