Create a regression model with BigQuery DataFrames

Create a linear regression model on the body mass of penguins using the BigQuery DataFrames API.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

from bigframes.ml.linear_model import LinearRegression import bigframes.pandas as bpd # Load data from BigQuery query_or_table = "bigquery-public-data.ml_datasets.penguins" bq_df = bpd.read_gbq(query_or_table) # Filter down to the data to the Adelie Penguin species adelie_data = bq_df[bq_df.species == "Adelie Penguin (Pygoscelis adeliae)"] # Drop the species column adelie_data = adelie_data.drop(columns=["species"]) # Drop rows with nulls to get training data training_data = adelie_data.dropna() # Specify your feature (or input) columns and the label (or output) column: feature_columns = training_data[ ["island", "culmen_length_mm", "culmen_depth_mm", "flipper_length_mm", "sex"] ] label_columns = training_data[["body_mass_g"]] test_data = adelie_data[adelie_data.body_mass_g.isnull()] # Create the linear model model = LinearRegression() model.fit(feature_columns, label_columns) # Score the model score = model.score(feature_columns, label_columns) # Predict using the model result = model.predict(test_data)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.