Customize your Spark job runtime environment with Docker on YARN

The Dataproc Docker on YARN feature allows you to create and use a Docker image to customize your Spark job runtime environment. The image can include customizations to Java, Python, and R dependencies, and to your job jar.

Limitations

Feature availability or support is not available with:

  • Dataproc image versions prior to 2.0.49 (not available in 1.5 images)
  • MapReduce jobs (only supported for Spark jobs )
  • Spark client mode (only supported with Spark cluster mode)
  • Kerberos clusters: cluster creation fails if you create a cluster with Docker on YARN and Kerberos enabled.
  • Customizations of JDK, Hadoop and Spark: the host JDK, Hadoop, and Spark are used, not your customizations.

Create a Docker image

The first step to customize your Spark environment is building a Docker image.

Dockerfile

You can use the following Dockerfile as an example, making changes and additions to meet you needs.

FROM debian:10-slim # Suppress interactive prompts. ENV DEBIAN_FRONTEND=noninteractive # Required: Install utilities required by Spark scripts. RUN apt update && apt install -y procps tini # Optional: Add extra jars. ENV SPARK_EXTRA_JARS_DIR=/opt/spark/jars/ ENV SPARK_EXTRA_CLASSPATH='/opt/spark/jars/*' RUN mkdir -p "${SPARK_EXTRA_JARS_DIR}" COPY *.jar "${SPARK_EXTRA_JARS_DIR}" # Optional: Install and configure Miniconda3. ENV CONDA_HOME=/opt/miniconda3 ENV PYSPARK_PYTHON=${CONDA_HOME}/bin/python ENV PYSPARK_DRIVER_PYTHON=${CONDA_HOME}/bin/python ENV PATH=${CONDA_HOME}/bin:${PATH} COPY Miniconda3-py39_4.10.3-Linux-x86_64.sh . RUN bash Miniconda3-py39_4.10.3-Linux-x86_64.sh -b -p /opt/miniconda3 \  && ${CONDA_HOME}/bin/conda config --system --set always_yes True \  && ${CONDA_HOME}/bin/conda config --system --set auto_update_conda False \  && ${CONDA_HOME}/bin/conda config --system --prepend channels conda-forge \  && ${CONDA_HOME}/bin/conda config --system --set channel_priority strict # Optional: Install Conda packages. # # The following packages are installed in the default image. It is strongly # recommended to include all of them. # # Use mamba to install packages quickly. RUN ${CONDA_HOME}/bin/conda install mamba -n base -c conda-forge \  && ${CONDA_HOME}/bin/mamba install \  conda \  cython \  fastavro \  fastparquet \  gcsfs \  google-cloud-bigquery-storage \  google-cloud-bigquery[pandas] \  google-cloud-bigtable \  google-cloud-container \  google-cloud-datacatalog \  google-cloud-dataproc \  google-cloud-datastore \  google-cloud-language \  google-cloud-logging \  google-cloud-monitoring \  google-cloud-pubsub \  google-cloud-redis \  google-cloud-spanner \  google-cloud-speech \  google-cloud-storage \  google-cloud-texttospeech \  google-cloud-translate \  google-cloud-vision \  koalas \  matplotlib \  nltk \  numba \  numpy \  openblas \  orc \  pandas \  pyarrow \  pysal \  pytables \  python \  regex \  requests \  rtree \  scikit-image \  scikit-learn \  scipy \  seaborn \  sqlalchemy \  sympy \  virtualenv # Optional: Add extra Python modules. ENV PYTHONPATH=/opt/python/packages RUN mkdir -p "${PYTHONPATH}" COPY test_util.py "${PYTHONPATH}" # Required: Create the 'yarn_docker_user' group/user. # The GID and UID must be 1099. Home directory is required. RUN groupadd -g 1099 yarn_docker_user RUN useradd -u 1099 -g 1099 -d /home/yarn_docker_user -m yarn_docker_user USER yarn_docker_user 

Build and push the image

The following is commands for building and pushing the example Docker image, you can make changes according to your customizations.

# Increase the version number when there is a change to avoid referencing # a cached older image. Avoid reusing the version number, including the default # `latest` version. IMAGE=gcr.io/my-project/my-image:1.0.1 # Download the BigQuery connector. gcloud storage cp \  gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar . # Download the Miniconda3 installer. wget https://repo.anaconda.com/miniconda/Miniconda3-py39_4.10.3-Linux-x86_64.sh # Python module example: cat >test_util.py <<EOF def hello(name):  print("hello {}".format(name)) def read_lines(path):  with open(path) as f:  return f.readlines() EOF # Build and push the image. docker build -t "${IMAGE}" . docker push "${IMAGE}" 

Create a Dataproc cluster

After creating a Docker image that customizes your Spark environment, create a Dataproc cluster that will use your Docker image when running Spark jobs.

gcloud

 gcloud dataproc clusters create CLUSTER_NAME \     --region=REGION \     --image-version=DP_IMAGE \     --optional-components=DOCKER \     --properties=dataproc:yarn.docker.enable=true,dataproc:yarn.docker.image=DOCKER_IMAGE \     other flags 

Replace the following;

  • CLUSTER_NAME: The cluster name.
  • REGION: The cluster region.
  • DP_IMAGE: Dataproc image version must be 2.0.49 or later (--image-version=2.0 will use a qualified minor version later than 2.0.49).
  • --optional-components=DOCKER: Enables the Docker component on the cluster.
  • --properties flag:
    • dataproc:yarn.docker.enable=true: Required property to enable the Dataproc Docker on YARN feature.
    • dataproc:yarn.docker.image: Optional property that you can add to specify your DOCKER_IMAGE using the following Container Registry image naming format: {hostname}/{project-id}/{image}:{tag}.

      Example:

       dataproc:yarn.docker.image=gcr.io/project-id/image:1.0.1 

      Requirement: You must host your Docker image on Container Registry or Artifact Registry. (Dataproc cannot fetch containers from other registries).

      Recommendation: Add this property when you create your cluster to cache your Docker image and avoid YARN timeouts later when you submit a job that uses the image.

When dataproc:yarn.docker.enable is set to true, Dataproc updates Hadoop and Spark configurations to enable the Docker on YARN feature in the cluster. For example, spark.submit.deployMode is set to cluster, and spark.yarn.appMasterEnv.YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS and spark.executorEnv.YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS are set to mount directories from the host into the container.

Submit a Spark job to the cluster

After creating a Dataproc cluster, submit a Spark job to the cluster that uses your Docker image. The example in this section submits a PySpark job to the cluster.

Set job properties:

# Set the Docker image URI. IMAGE=(e.g., gcr.io/my-project/my-image:1.0.1) # Required: Use `#` as the delimiter for properties to avoid conflicts. JOB_PROPERTIES='^#^' # Required: Set Spark properties with the Docker image. JOB_PROPERTIES="${JOB_PROPERTIES}#spark.yarn.appMasterEnv.YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=${IMAGE}" JOB_PROPERTIES="${JOB_PROPERTIES}#spark.executorEnv.YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=${IMAGE}" # Optional: Add custom jars to Spark classpath. Don't set these properties if # there are no customizations. JOB_PROPERTIES="${JOB_PROPERTIES}#spark.driver.extraClassPath=/opt/spark/jars/*" JOB_PROPERTIES="${JOB_PROPERTIES}#spark.executor.extraClassPath=/opt/spark/jars/*" # Optional: Set custom PySpark Python path only if there are customizations. JOB_PROPERTIES="${JOB_PROPERTIES}#spark.pyspark.python=/opt/miniconda3/bin/python" JOB_PROPERTIES="${JOB_PROPERTIES}#spark.pyspark.driver.python=/opt/miniconda3/bin/python" # Optional: Set custom Python module path only if there are customizations. # Since the `PYTHONPATH` environment variable defined in the Dockerfile is # overridden by Spark, it must be set as a job property. JOB_PROPERTIES="${JOB_PROPERTIES}#spark.yarn.appMasterEnv.PYTHONPATH=/opt/python/packages" JOB_PROPERTIES="${JOB_PROPERTIES}#spark.executorEnv.PYTHONPATH=/opt/python/packages" 

Notes:

gcloud

Submit the job to the cluster.

 gcloud dataproc jobs submit pyspark PYFILE \     --cluster=CLUSTER_NAME \     --region=REGION \     --properties=${JOB_PROPERTIES} 

Replace the following;

  • PYFILE: The file path to your PySpark job file. It can be a local file path or the URI of the file in Cloud Storage (gs://BUCKET_NAME/PySpark filename).
  • CLUSTER_NAME: The cluster name.
  • REGION: The cluster region.