This challenge like some of my previous challenges will have you counting free polyforms, which are generalizations of Tetris pieces.
This code-golf challenge will have you count polyomino-like polyforms on hypercubes. In particular, this challenge is to write a program that takes in three parameters:
n, which represents an \$n\$-dimensional hypercube,m, which represents \$m\$-dimensional faces of the hypercube, andk, which represents the number of cells in the polyform,
and outputs the number of ways to choose \$k\$ (\$m\$-dimensional) faces on the \$n\$-cube such that the \$m\$-faces are connected at \$(m-1)\$-faces. These polyforms are "free" which means they should be counted up to the rotations/reflections of the \$n\$-cube.
Again, this is a code-golf challenge, so shortest code wins.
Example 1
Okay, this is all very abstract, so this warrants an example.
When n=3, we're talking about the \$3\$-dimensional (ordinary) cube. When m=2 this means we're talking about the \$2\$-dimensional (square) faces. And we're talking about k of these, joined along \$1\$-dimensional faces (edges).
When k=3, there are two such polyforms (on the left) up to rotations/reflections of the cube. When k=4 there are also two polyforms (on the right). 
Example 2
In this second example, n=3 still, so we're again talking about the \$3\$-dimensional (ordinary) cube. When m=1 this means we're talking about the \$1\$-dimensional faces (edges). And we're talking about k of these, joined along \$0\$-dimensional faces (corners).
When k=4 there are four such polyforms. 
Data
n | m | k | f(n,m,k) --+---+---+--------- 3 | 2 | 3 | 2 (Example 1, left) 3 | 2 | 4 | 2 (Example 1, right) 3 | 1 | 4 | 4 (Example 2) 2 | 1 | 2 | 1 3 | 0 | 0 | 1 3 | 0 | 1 | 1 3 | 0 | 2 | 0 3 | 1 | 3 | 3 3 | 1 | 5 | 9 3 | 1 | 6 | 14 3 | 1 | 7 | 19 3 | 1 | 8 | 16 3 | 1 | 9 | 9 3 | 3 | 0 | 1 3 | 3 | 1 | 1 3 | 3 | 2 | 0 4 | 1 | 4 | 7 4 | 1 | 5 | 21 4 | 1 | 6 | 72 4 | 1 | 7 | 269 4 | 1 | 8 | 994 4 | 1 | 9 | 3615 4 | 2 | 3 | 5 4 | 2 | 4 | 12 4 | 2 | 5 | 47 5 | 1 | 4 | 7 5 | 1 | 5 | 27 5 | 2 | 0 | 1 5 | 2 | 1 | 1 5 | 2 | 2 | 1 5 | 2 | 3 | 5 5 | 2 | 4 | 20 5 | 3 | 4 | 16 5 | 3 | 5 | 73 5 | 4 | 4 | 3 6 | 1 | 6 | 121
f(4,1,6) = 72,f(4, 1, 7) = 269,f(4,1,8) = 994with all the other test cases being correct. Is this an error in the test cases? I also getf(4, 1, 9) = 3615so I think those test cases might be off-by-one onk. \$\endgroup\$