Challenge
Imagine a hexagonal grid as shown below. Let's call such a grid has size \$n\$ if it has \$n\$ dots on one side. The following is one of size 3:
- - - - - - - - - - - - - - - - - - - Then, pick as many dots as possible on the grid so that no two dots are adjacent. For size 3, the maximum is 7 dots:
- * - * - * * - - * - - - - - - * - - or * - * - * * - - * - - - - - * - * - * Your task is to output such a grid. For a size-\$n\$ hexagon, the output must contain exactly A002061(n) = \$n^2-n+1\$ non-adjacent dots. The corresponding maximal pattern can be found in this image linked on the OEIS sequence (imagine this: dissect all the hexagons there into triangles, remove one outermost layer of triangles, and pick the centers of original hexagons). The corresponding ASCII-art output must look like the following, modulo rotation/reflection:
n = 1 * n = 2 * - - - * * - n = 3 (following or alternative shown above) * - * - - - - * - * - * - - - - * - * n = 4 * - - * - - * - - - * - - * - * - - * - - * - * - - * - - - * - - * - - * n = 5 - * - - * * - - * - - - - * - - * - - * - - * - - * * - - * - - * - - - * - - * - - * - - * - - * - * - - * - - - * - - * n = 6 - * - - * - * - - * - - * - - * - - * - - - * - - * - - * - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - - * - - * - - * - - * - - * - * - - * - n = 7 * - - * - - * - - * - - * - - - * - - * - - * - * - - * - - * - - * - - * - - * - - * - - - * - - * - - * - - * - * - - * - - * - - * - - * - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - - * - - * - - * - - * - - * n = 8 - * - - * - - * * - - * - - * - - - - * - - * - - * - - * - - * - - * - - * * - - * - - * - - * - - - - * - - * - - * - - * - - * - - * - - * - - * - - * * - - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - - * - - * - - * n = 9 - * - - * - - * - * - - * - - * - - * - - * - - * - - * - - - * - - * - - * - - * - * - - * - - * - - * - - * - - * - - * - - * - - * - - - * - - * - - * - - * - - * - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - n = 10 * - - * - - * - - * - - * - - * - - * - - - * - - * - - * - - * - * - - * - - * - - * - - * - - * - - * - - * - - * - - - * - - * - - * - - * - - * - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - - * - - * - - * - * - - * - - * - - * - - - * - - * - - * - - * - - * - - * - - * I/O and rules
You can use any two distinct non-whitespace chars for marked and unmarked dots respectively. Trailing spaces on each line and leading/trailing whitespaces are allowed. Outputting a list of lines, and outputting integer charcodes instead of the corresponding chars are also allowed.
Standard code-golf rules apply. The shortest code in bytes wins.